Spectral element method

Last updated

In the numerical solution of partial differential equations, a topic in mathematics, the spectral element method (SEM) is a formulation of the finite element method (FEM) that uses high-degree piecewise polynomials as basis functions. The spectral element method was introduced in a 1984 paper [1] by A. T. Patera. Although Patera is credited with development of the method, his work was a rediscovery of an existing method (see Development History)

Contents

Discussion

The spectral method expands the solution in trigonometric series, a chief advantage being that the resulting method is of a very high order. This approach relies on the fact that trigonometric polynomials are an orthonormal basis for . [2] The spectral element method chooses instead a high degree piecewise polynomial basis functions, also achieving a very high order of accuracy. Such polynomials are usually orthogonal Chebyshev polynomials or very high order Lagrange polynomials over non-uniformly spaced nodes. In SEM computational error decreases exponentially as the order of approximating polynomial increases, therefore a fast convergence of solution to the exact solution is realized with fewer degrees of freedom of the structure in comparison with FEM. In structural health monitoring, FEM can be used for detecting large flaws in a structure, but as the size of the flaw is reduced there is a need to use a high-frequency wave. In order to simulate the propagation of a high-frequency wave, the FEM mesh required is very fine resulting in increased computational time. On the other hand, SEM provides good accuracy with fewer degrees of freedom. Non-uniformity of nodes helps to make the mass matrix diagonal, which saves time and memory and is also useful for adopting a central difference method (CDM). The disadvantages of SEM include difficulty in modeling complex geometry, compared to the flexibility of FEM.

Although the method can be applied with a modal piecewise orthogonal polynomial basis, it is most often implemented with a nodal tensor product Lagrange basis. [3] The method gains its efficiency by placing the nodal points at the Legendre-Gauss-Lobatto (LGL) points and performing the Galerkin method integrations with a reduced Gauss-Lobatto quadrature using the same nodes. With this combination, simplifications result such that mass lumping occurs at all nodes and a collocation procedure results at interior points.

The most popular applications of the method are in computational fluid dynamics [3] and modeling seismic wave propagation. [4]

A-priori error estimate

The classic analysis of Galerkin methods and Céa's lemma holds here and it can be shown that, if is the solution of the weak equation, is the approximate solution and :

where is related to the discretization of the domain (ie. element length), is independent from , and is no larger than the degree of the piecewise polynomial basis. Similar results can be obtained to bound the error in stronger topologies. If

As we increase , we can also increase the degree of the basis functions. In this case, if is an analytic function:

where depends only on .

The Hybrid-Collocation-Galerkin possesses some superconvergence properties. [5] The LGL form of SEM is equivalent, [6] so it achieves the same superconvergence properties.

Development History

Development of the most popular LGL form of the method is normally attributed to Maday and Patera. [7] However, it was developed more than a decade earlier. First, there is the Hybrid-Collocation-Galerkin method (HCGM), [8] [5] which applies collocation at the interior Lobatto points and uses a Galerkin-like integral procedure at element interfaces. The Lobatto-Galerkin method described by Young [9] is identical to SEM, while the HCGM is equivalent to these methods. [6] This earlier work is ignored in the spectral literature.

Notes

  1. Patera, A. T. (1984). "A spectral element method for fluid dynamics - Laminar flow in a channel expansion". Journal of Computational Physics. 54 (3): 468–488. Bibcode:1984JCoPh..54..468P. doi:10.1016/0021-9991(84)90128-1.
  2. Muradova, Aliki D. (2008). "The spectral method and numerical continuation algorithm for the von Kármán problem with postbuckling behaviour of solutions". Adv Comput Math. 29 (2): 179–206, 2008. doi:10.1007/s10444-007-9050-7. hdl: 1885/56758 . S2CID   46564029.
  3. 1 2 Karniadakis, G. and Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics, Oxford Univ. Press, (2013), ISBN   9780199671366
  4. Komatitsch, D. and Villote, J.-P.: “The Spectral Element Method: An Efficient Tool to Simulate the Seismic Response of 2D and 3D Geologic Structures,” Bull. Seismological Soc. America, 88, 2, 368-392 (1998)
  5. 1 2 Wheeler, M.F.: “A C0-Collocation-Finite Element Method for Two-Point Boundary Value and One Space Dimension Parabolic Problems,” SIAM J. Numer. Anal., 14, 1, 71-90 (1977)
  6. 1 2 3 Young, L.C., “Orthogonal Collocation Revisited,” Comp. Methods in Appl. Mech. and Engr. 345 (1) 1033-1076 (Mar. 2019), doi.org/10.1016/j.cma.2018.10.019
  7. Maday, Y. and Patera, A. T., “Spectral Element Methods for the Incompressible Navier-Stokes Equations” In State-of-the-Art Surveys on Computational Mechanics, A.K. Noor, editor, ASME, New York (1989).
  8. Diaz, J., “A Collocation-Galerkin Method for the Two-point Boundary Value Problem Using Continuous Piecewise Polynomial Spaces,” SIAM J. Num. Anal., 14 (5) 844-858 (1977) ISSN 0036-1429
  9. Young, L.C., “A Finite-Element Method for Reservoir Simulation,” Soc. Petr. Engrs. J. 21(1) 115-128, (Feb. 1981), paper SPE 7413 presented Oct. 1978, doi.org/10.2118/7413-PA
  10. Barna Szabó and Ivo Babuška, Finite element analysis, John Wiley & Sons, Inc., New York, 1991. ISBN   0-471-50273-1
  11. P. Šolín, K. Segeth, I. Doležel: Higher-order finite element methods, Chapman & Hall/CRC Press, 2003. ISBN   1-58488-438-X

Related Research Articles

Spectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve certain differential equations. The idea is to write the solution of the differential equation as a sum of certain "basis functions" and then to choose the coefficients in the sum in order to satisfy the differential equation as well as possible.

In the study of differential equations, the Ritz method is a direct method to find an approximate solution for boundary value problems. The method is named after Walther Ritz. Some alternative formulations include the Rayleigh–Ritz method and the Ritz-Galerkin method.

In mathematics, in the area of numerical analysis, Galerkin methods are named after the Soviet mathematician Boris Galerkin. They convert a continuous operator problem, such as a differential equation, commonly in a weak formulation, to a discrete problem by applying linear constraints determined by finite sets of basis functions.

In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations. The idea is to choose a finite-dimensional space of candidate solutions and a number of points in the domain, and to select that solution which satisfies the given equation at the collocation points.

<span class="mw-page-title-main">Meshfree methods</span> Methods in numerical analysis not requiring knowledge of neighboring points

In the field of numerical analysis, meshfree methods are those that do not require connection between nodes of the simulation domain, i.e. a mesh, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort. The absence of a mesh allows Lagrangian simulations, in which the nodes can move according to the velocity field.

In applied mathematics, discontinuous Galerkin methods (DG methods) form a class of numerical methods for solving differential equations. They combine features of the finite element and the finite volume framework and have been successfully applied to hyperbolic, elliptic, parabolic and mixed form problems arising from a wide range of applications. DG methods have in particular received considerable interest for problems with a dominant first-order part, e.g. in electrodynamics, fluid mechanics and plasma physics.

The Gauss pseudospectral method (GPM), one of many topics named after Carl Friedrich Gauss, is a direct transcription method for discretizing a continuous optimal control problem into a nonlinear program (NLP). The Gauss pseudospectral method differs from several other pseudospectral methods in that the dynamics are not collocated at either endpoint of the time interval. This collocation, in conjunction with the proper approximation to the costate, leads to a set of KKT conditions that are identical to the discretized form of the first-order optimality conditions. This equivalence between the KKT conditions and the discretized first-order optimality conditions leads to an accurate costate estimate using the KKT multipliers of the NLP.

<span class="mw-page-title-main">Finite element method</span> Numerical method for solving physical or engineering problems

The finite element method (FEM) is an extremely popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.

In the finite element method for the numerical solution of elliptic partial differential equations, the stiffness matrix is a matrix that represents the system of linear equations that must be solved in order to ascertain an approximate solution to the differential equation.

Isogeometric analysis is a computational approach that offers the possibility of integrating finite element analysis (FEA) into conventional NURBS-based CAD design tools. Currently, it is necessary to convert data between CAD and FEA packages to analyse new designs during development, a difficult task since the two computational geometric approaches are different. Isogeometric analysis employs complex NURBS geometry in the FEA application directly. This allows models to be designed, tested and adjusted in one go, using a common data set.

In numerical mathematics, hierarchical matrices (H-matrices) are used as data-sparse approximations of non-sparse matrices. While a sparse matrix of dimension can be represented efficiently in units of storage by storing only its non-zero entries, a non-sparse matrix would require units of storage, and using this type of matrices for large problems would therefore be prohibitively expensive in terms of storage and computing time. Hierarchical matrices provide an approximation requiring only units of storage, where is a parameter controlling the accuracy of the approximation. In typical applications, e.g., when discretizing integral equations, preconditioning the resulting systems of linear equations, or solving elliptic partial differential equations, a rank proportional to with a small constant is sufficient to ensure an accuracy of . Compared to many other data-sparse representations of non-sparse matrices, hierarchical matrices offer a major advantage: the results of matrix arithmetic operations like matrix multiplication, factorization or inversion can be approximated in operations, where

In scientific computation and simulation, the method of fundamental solutions (MFS) is a technique for solving partial differential equations based on using the fundamental solution as a basis function. The MFS was developed to overcome the major drawbacks in the boundary element method (BEM) which also uses the fundamental solution to satisfy the governing equation. Consequently, both the MFS and the BEM are of a boundary discretization numerical technique and reduce the computational complexity by one dimensionality and have particular edge over the domain-type numerical techniques such as the finite element and finite volume methods on the solution of infinite domain, thin-walled structures, and inverse problems.

In numerical mathematics, the boundary knot method (BKM) is proposed as an alternative boundary-type meshfree distance function collocation scheme.

The Kansa method is a computer method used to solve partial differential equations. Its main advantage is it is very easy to understand and program on a computer. It is much less complicated than the finite element method. Another advantage is it works well on multi variable problems. The finite element method is complicated when working with more than 3 space variables and time.

Fluid motion is governed by the Navier–Stokes equations, a set of coupled and nonlinear partial differential equations derived from the basic laws of conservation of mass, momentum and energy. The unknowns are usually the flow velocity, the pressure and density and temperature. The analytical solution of this equation is impossible hence scientists resort to laboratory experiments in such situations. The answers delivered are, however, usually qualitatively different since dynamical and geometric similitude are difficult to enforce simultaneously between the lab experiment and the prototype. Furthermore, the design and construction of these experiments can be difficult, particularly for stratified rotating flows. Computational fluid dynamics (CFD) is an additional tool in the arsenal of scientists. In its early days CFD was often controversial, as it involved additional approximation to the governing equations and raised additional (legitimate) issues. Nowadays CFD is an established discipline alongside theoretical and experimental methods. This position is in large part due to the exponential growth of computer power which has allowed us to tackle ever larger and more complex problems.

The generalized-strain mesh-free (GSMF) formulation is a local meshfree method in the field of numerical analysis, completely integration free, working as a weighted-residual weak-form collocation. This method was first presented by Oliveira and Portela (2016), in order to further improve the computational efficiency of meshfree methods in numerical analysis. Local meshfree methods are derived through a weighted-residual formulation which leads to a local weak form that is the well known work theorem of the theory of structures. In an arbitrary local region, the work theorem establishes an energy relationship between a statically-admissible stress field and an independent kinematically-admissible strain field. Based on the independence of these two fields, this formulation results in a local form of the work theorem that is reduced to regular boundary terms only, integration-free and free of volumetric locking.

<span class="mw-page-title-main">Gradient discretisation method</span>

In numerical mathematics, the gradient discretisation method (GDM) is a framework which contains classical and recent numerical schemes for diffusion problems of various kinds: linear or non-linear, steady-state or time-dependent. The schemes may be conforming or non-conforming, and may rely on very general polygonal or polyhedral meshes.

The proper generalized decomposition (PGD) is an iterative numerical method for solving boundary value problems (BVPs), that is, partial differential equations constrained by a set of boundary conditions, such as the Poisson's equation or the Laplace's equation.

The variational multiscale method (VMS) is a technique used for deriving models and numerical methods for multiscale phenomena. The VMS framework has been mainly applied to design stabilized finite element methods in which stability of the standard Galerkin method is not ensured both in terms of singular perturbation and of compatibility conditions with the finite element spaces.