Isogeometric analysis

Last updated

Isogeometric analysis is a computational approach that offers the possibility of integrating finite element analysis (FEA) into conventional NURBS-based CAD design tools. Currently, it is necessary to convert data between CAD and FEA packages to analyse new designs during development, a difficult task since the two computational geometric approaches are different. Isogeometric analysis employs complex NURBS geometry (the basis of most CAD packages) in the FEA application directly. This allows models to be designed, tested and adjusted in one go, using a common data set. [1]

Contents

The pioneers of this technique are Tom Hughes and his group at The University of Texas at Austin. A reference free software implementation of some isogeometric analysis methods is GeoPDEs. [2] [3] Likewise, other implementations can be found online. For instance, PetIGA [4] is an open framework for high performance isogeometric analysis heavily based on PETSc. In addition, MIGFEM is another IGA code which is implemented in Matlab and supports Partition of Unity enrichment IGA for 2D and 3D fracture. Furthermore, G+Smo [5] is an open C++ library for isogeometric analysis. In particular, FEAP [6] is a finite element analysis program which includes an Isogeometric analysis library FEAP IsoGeometric (Version FEAP84 & Version FEAP85). An account of the developments leading up to IGA has been documented in. [7]

Advantages of IGA with respect to FEA

Isogeometric analysis presents two main advantages with respect to the finite element method: [1] [7] [8]

Meshes

In the framework of IGA, the notions of both control mesh and physical mesh are defined. [1]

A control mesh is made by the so-called control points and it is obtained by a piecewise linear interpolation of them. Control points play also the role of degrees of freedom (DOFs). [1]

The physical mesh lays directly on the geometry and it consists of patches and knot spans. According to the number of patches that are used in a specific physical mesh, a single-patch or a multi-patch approach is effectively employed. A patch is mapped from a reference rectangle in two dimensions and from a reference cuboid in three dimensions: it can be seen as the entire computational domain or a smaller portion of it. Each patch can be decomposed into knot spans, which are points, lines and surfaces in 1D, 2D and 3D, respectively. Knots are inserted inside knot spans and define the elements. Basis functions are across the knots, with degree of the polynomial and multiplicity of a specific knot, and between a certain knot and the next or preceding one. [1]

Knot vector

A knot vector, normally indicated as , is a set of non-descending points. is the knot, is the number of functions, refers to the basis functions order. A knot divides the knot span into elements. A knot vector is uniform or non-uniform according to the fact that its knots, once their multiplicity is not taken into account, are equidistant or not. If the first and the last knots appear times, the knot vector is said to be open. [1] [8]

Basis functions

Once a definition of knot vector is provided, several types of basis functions can be introduced in this context, such as B-splines, NURBS and T-splines. [1]

B-splines

B-splines can be derived recursively from a piecewise constant function with : [1]

Using De Boor's algorithm, it is possible to generate B-splines of arbitrary order : [1]

valid for both uniform and non-uniform knot vectors. For the previous formula to work properly, let the division of two zeros to be equal to zero, i.e. .

B-splines that are generated in this way own both the partition of unity and positivity properties, i.e.: [1]

So as to calculate derivatives or order of the B-splines of degree , another recursive formula can be employed: [1]

where:

whenever the denominator of an coefficient is zero, the entire coefficient is forced to be zero as well.

A B-spline curve can be written in the following way: [8]

where is the number of basis functions , and is the control point, with dimension of the space in which the curve is immersed.

An extension to the two dimensional case can be easily obtained from B-splines curves. [8] In particular B-spline surfaces are introduced as: [8]

where and are the numbers of basis functions and defined on two different knot vectors , , represents now a matrix of control points (also called control net).

Finally, B-splines solids, that need three sets of B-splines basis functions and a tensor of control points, can be defined as: [8]

NURBS

In IGA basis functions are also employed to develop the computational domain and not only for representing the numerical solution. For this reason they should have all the properties that permit to represent the geometry in an exact way. B-splines, due to their intrinsic structure, are not able to generate properly circular shapes for instance. [1] In order to circumvent this issue, non-uniform rational B-splines, also known as NURBS, are introduced in the following way: [1]

where is a one dimensional B-spline, is referred to as weighting function, and finally is the weight.

Following the idea developed in the subsection about B-splines, NURBS curve are generated as follows: [1]

with vector of control points.

The extension of NURBS basis functions to manifolds of higher dimensions (for instance 2 and 3) is given by: [1]

hpk-refinements

There are three techniques in IGA that permit to enlarge the space of basis functions without touching the geometry and its parametrization. [1]

The first one is known as knot insertion (or h-refinement in the FEA framework), where is obtained from with the addition of more knots, which implies an increment of both the number of basis functions and control points. [1]

The second one is called degree elevation (or p-refinement in the FEA context), which permits to increase the polynomial order of the basis functions. [1]

Finally the third method, known as k-refinement (without a counterpart in FEA), derives from the preceding two techniques, i.e. combines the order elevation with the insertion of a unique knot in . [1]

Related Research Articles

<span class="mw-page-title-main">B-spline</span> Spline function

In the mathematical subfield of numerical analysis, a B-spline or basis spline is a spline function that has minimal support with respect to a given degree, smoothness, and domain partition. Any spline function of given degree can be expressed as a linear combination of B-splines of that degree. Cardinal B-splines have knots that are equidistant from each other. B-splines can be used for curve-fitting and numerical differentiation of experimental data.

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical physics, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

<span class="mw-page-title-main">Gaussian quadrature</span> Approximation of the definite integral of a function

In numerical analysis, an n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the nodes xi and weights wi for i = 1, ..., n.

<span class="mw-page-title-main">Taylor's theorem</span> Approximation of a function by a truncated power series

In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation. There are several versions of Taylor's theorem, some giving explicit estimates of the approximation error of the function by its Taylor polynomial.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter and a scale parameter .
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.
<span class="mw-page-title-main">Differential operator</span> Typically linear operator defined in terms of differentiation of functions

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.

<span class="mw-page-title-main">Non-uniform rational B-spline</span> Method of representing curves and surfaces in computer graphics

Non-uniform rational basis spline (NURBS) is a mathematical model using basis splines (B-splines) that is commonly used in computer graphics for representing curves and surfaces. It offers great flexibility and precision for handling both analytic and modeled shapes. It is a type of curve modeling, as opposed to polygonal modeling or digital sculpting. NURBS curves are commonly used in computer-aided design (CAD), manufacturing (CAM), and engineering (CAE). They are part of numerous industry-wide standards, such as IGES, STEP, ACIS, and PHIGS. Tools for creating and editing NURBS surfaces are found in various 3D graphics and animation software packages.

<span class="mw-page-title-main">Spline (mathematics)</span> Mathematical function defined piecewise by polynomials

In mathematics, a spline is a special function defined piecewise by polynomials. In interpolating problems, spline interpolation is often preferred to polynomial interpolation because it yields similar results, even when using low degree polynomials, while avoiding Runge's phenomenon for higher degrees.

In the mathematical subfield of numerical analysis de Boor's algorithm is a polynomial-time and numerically stable algorithm for evaluating spline curves in B-spline form. It is a generalization of de Casteljau's algorithm for Bézier curves. The algorithm was devised by Carl R. de Boor. Simplified, potentially faster variants of the de Boor algorithm have been created but they suffer from comparatively lower stability.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In probability theory and statistics, the generalized extreme value (GEV) distribution is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions. By the extreme value theorem the GEV distribution is the only possible limit distribution of properly normalized maxima of a sequence of independent and identically distributed random variables. Note that a limit distribution needs to exist, which requires regularity conditions on the tail of the distribution. Despite this, the GEV distribution is often used as an approximation to model the maxima of long (finite) sequences of random variables.

An elliptic filter is a signal processing filter with equalized ripple (equiripple) behavior in both the passband and the stopband. The amount of ripple in each band is independently adjustable, and no other filter of equal order can have a faster transition in gain between the passband and the stopband, for the given values of ripple. Alternatively, one may give up the ability to adjust independently the passband and stopband ripple, and instead design a filter which is maximally insensitive to component variations.

In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

An -superprocess, , within mathematics probability theory is a stochastic process on that is usually constructed as a special limit of near-critical branching diffusions.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In fracture mechanics, the energy release rate, , is the rate at which energy is transformed as a material undergoes fracture. Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture surface area, and is thus expressed in terms of energy per unit area. Various energy balances can be constructed relating the energy released during fracture to the energy of the resulting new surface, as well as other dissipative processes such as plasticity and heat generation. The energy release rate is central to the field of fracture mechanics when solving problems and estimating material properties related to fracture and fatigue.

In kinematics, the motion of a rigid body is defined as a continuous set of displacements. One-parameter motions can be defined as a continuous displacement of moving object with respect to a fixed frame in Euclidean three-space (E3), where the displacement depends on one parameter, mostly identified as time.

Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Cottrell, J. Austin; Hughes, Thomas J.R.; Bazilevs, Yuri (October 2009). Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons. ISBN   978-0-470-74873-2 . Retrieved 2009-09-22.
  2. "GeoPDEs: a free software tool for isogeometric analysis of PDEs". 2010. Retrieved November 7, 2010.
  3. de Falco, C.; A. Reali; R. Vázquez (2011). "GeoPDEs: a research tool for Isogeometric Analysis of PDEs". Adv. Eng. Softw. 42 (12): 1020–1034. doi:10.1016/j.advengsoft.2011.06.010.
  4. "PetIGA: A framework for high performance Isogeometric Analysis". 2012. Archived from the original on July 14, 2014. Retrieved August 7, 2012.
  5. "G+Smo: a C++ library for isogeometric analysis, developed at RICAM, Linz". 2017. Retrieved July 9, 2017.
  6. "FEAP: FEAP is a general purpose finite element analysis program which is designed for research and educational use, developed at University of California, Berkeley". 2018. Retrieved April 21, 2018.
  7. 1 2 Provatidis, Christopher G. (2019). Precursors of Isogeometric Analysis. Springer. pp. 1–25. ISBN   978-3-030-03888-5.
  8. 1 2 3 4 5 6 7 Pegolotti, Luca; Dedè, Luca; Quarteroni, Alfio (January 2019). "Isogeometric Analysis of the electrophysiology in the human heart: Numerical simulation of the bidomain equations on the atria" (PDF). Computer Methods in Applied Mechanics and Engineering. 343: 52–73. Bibcode:2019CMAME.343...52P. doi:10.1016/j.cma.2018.08.032. hdl:11311/1066014. S2CID   53613848.