Analytic element method

Last updated

The analytic element method (AEM) is a numerical method used for the solution of partial differential equations. [1] [2] [3] It was initially developed by O.D.L. Strack at the University of Minnesota. It is similar in nature to the boundary element method (BEM), as it does not rely upon the discretization of volumes or areas in the modeled system; only internal and external boundaries are discretized. One of the primary distinctions between AEM and BEMs is that the boundary integrals are calculated analytically. Although originally developed to model groundwater flow [4] , AEM has subsequently been applied to other fields of study including studies of heat flow and conduction, periodic waves, and deformation by force [5] .

Contents

Flow around impermeable cylinders. Solved with the AEM using 20 coefficients in the series expansions. Potential 20.png
Flow around impermeable cylinders. Solved with the AEM using 20 coefficients in the series expansions.

Mathematical basis

The basic premise of the analytic element method is that, for linear differential equations, elementary solutions may be superimposed to obtain more complex solutions. A suite of 2D and 3D analytic solutions ("elements") are available for different governing equations. These elements typically correspond to a discontinuity in the dependent variable or its gradient along a geometric boundary (e.g., point, line, ellipse, circle, sphere, etc.). This discontinuity has a specific functional form (usually a polynomial in 2D) and may be manipulated to satisfy Dirichlet, Neumann, or Robin (mixed) boundary conditions. Each analytic solution is infinite in space and/or time.

Commonly each analytic solution contains degrees of freedom (coefficients) that may be calculated to meet prescribed boundary conditions along the element's border. To obtain a global solution (i.e., the correct element coefficients), a system of equations is solved such that the boundary conditions are satisfied along all of the elements (using collocation, least-squares minimization, or a similar approach). Notably, the global solution provides a spatially continuous description of the dependent variable everywhere in the infinite domain, and the governing equation is satisfied everywhere exactly except along the border of the element, where the governing equation is not strictly applicable due to discontinuity.

The ability to superpose numerous elements in a single solution means that analytical solutions can be realized for arbitrarily complex boundary conditions. That is, models that have complex geometries, straight or curved boundaries, multiple boundaries, transient boundary conditions, multiple aquifer layers, piecewise varying properties, and continuously varying properties can be solved. Elements can be implemented using far-field expansions such that models containing many thousands of elements can be solved efficiently to high precision.

The analytic element method has been applied to problems of groundwater flow governed by a variety of linear partial differential equations including the Laplace, the Poisson equation, the modified Helmholtz equation, [6] the heat equation, and the biharmonic equations. Often these equations are solved using complex variables which enables using mathematical techniques available in complex variable theory. A useful technique to solve complex problems is using conformal mapping which maps the boundary of a geometry, e.g. an ellipse, onto the boundary of the unit circle where the solution is known.

In the analytic element method the discharge potential and stream function, or combined the complex potential, are used. This potential links the physical properties of the groundwater system, the hydraulic head or flow boundaries, to a mathematical representation of a potential. This mathematical representation can be used to calculate the potential in terms of position and thus also solve groundwater flow problems. Elements are developed by solving the boundary conditions for either of these two properties, hydraulic head or flow boundary, which results in analytical solutions capable of dealing with numerous boundary conditions.

Comparison to other methods

As mentioned the analytic element method thus does not rely on the discretization of volume or area in the model, as in the finite elements or finite different methods. Thus, it can model complex problems with an error in the order of machine precision. This is illustrated in a study that modeled a highly heterogeneous, isotropic aquifer by including 100,000 spherical heterogeneity with a random conductivity and tracing 40,000 particles. [7] The analytical element method can efficiently be used as verification or as a screening tool in larger projects as it may fast and accurately calculate the groundwater flow for many complex problems. [8] [9]

In contrast to other commonly used groundwater modeling methods, e.g. the finite elements or finite different method, the AEM does not discrete the model domain into cells. This gives the advantage that the model is valid for any given point in the model domain. However, it also imposes that the domain is not as easily divided into regions of e.g. different hydraulic conductivity, as when modeling with a cell grid; however, one solution to this problem is to include subdomains to the AEM model. [10] There also exist solutions for implementing vertically varying properties or structures in an aquifer in an AEM model. [11] [12] [13]

See also

Related Research Articles

<span class="mw-page-title-main">Computational fluid dynamics</span> Analysis and solving of problems that involve fluid flows

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is typically performed using experimental apparatus such as wind tunnels. In addition, previously performed analytical or empirical analysis of a particular problem can be used for comparison. A final validation is often performed using full-scale testing, such as flight tests.

Structural analysis is a branch of solid mechanics which uses simplified models for solids like bars, beams and shells for engineering decision making. Its main objective is to determine the effect of loads on the physical structures and their components. In contrast to theory of elasticity, the models used in structure analysis are often differential equations in one spatial variable. Structures subject to this type of analysis include all that must withstand loads, such as buildings, bridges, aircraft and ships. Structural analysis uses ideas from applied mechanics, materials science and applied mathematics to compute a structure's deformations, internal forces, stresses, support reactions, velocity, accelerations, and stability. The results of the analysis are used to verify a structure's fitness for use, often precluding physical tests. Structural analysis is thus a key part of the engineering design of structures.

<span class="mw-page-title-main">Hydrogeology</span> Study of the distribution and movement of groundwater

Hydrogeology is the area of geology that deals with the distribution and movement of groundwater in the soil and rocks of the Earth's crust. The terms groundwater hydrology, geohydrology, and hydrogeology are often used interchangeably.

In hydrogeology, an aquifer test is conducted to evaluate an aquifer by "stimulating" the aquifer through constant pumping, and observing the aquifer's "response" (drawdown) in observation wells. Aquifer testing is a common tool that hydrogeologists use to characterize a system of aquifers, aquitards and flow system boundaries.

A flow net is a graphical representation of two-dimensional steady-state groundwater flow through aquifers.

Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs).

The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations, including fluid mechanics, acoustics, electromagnetics, fracture mechanics, and contact mechanics.

Used in hydrogeology, the groundwater flow equation is the mathematical relationship which is used to describe the flow of groundwater through an aquifer. The transient flow of groundwater is described by a form of the diffusion equation, similar to that used in heat transfer to describe the flow of heat in a solid. The steady-state flow of groundwater is described by a form of the Laplace equation, which is a form of potential flow and has analogs in numerous fields.

<span class="mw-page-title-main">Computational electromagnetics</span> Branch of physics

Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment using computers.

E The finite-difference frequency-domain (FDFD) method is a numerical solution method for problems usually in electromagnetism and sometimes in acoustics, based on finite-difference approximations of the derivative operators in the differential equation being solved.

Groundwater discharge is the volumetric flow rate of groundwater through an aquifer.

Groundwater models are computer models of groundwater flow systems, and are used by hydrologists and hydrogeologists. Groundwater models are used to simulate and predict aquifer conditions.

FEFLOW is a computer program for simulating groundwater flow, mass transfer and heat transfer in porous media and fractured media. The program uses finite element analysis to solve the groundwater flow equation of both saturated and unsaturated conditions as well as mass and heat transport, including fluid density effects and chemical kinetics for multi-component reaction systems.

<span class="mw-page-title-main">Hydrological model</span>

A hydrologic model is a simplification of a real-world system that aids in understanding, predicting, and managing water resources. Both the flow and quality of water are commonly studied using hydrologic models.

<span class="mw-page-title-main">Finite element method</span> Numerical method for solving physical or engineering problems

The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.

<span class="mw-page-title-main">Homotopy analysis method</span>

The homotopy analysis method (HAM) is a semi-analytical technique to solve nonlinear ordinary/partial differential equations. The homotopy analysis method employs the concept of the homotopy from topology to generate a convergent series solution for nonlinear systems. This is enabled by utilizing a homotopy-Maclaurin series to deal with the nonlinearities in the system.

<span class="mw-page-title-main">Slope stability analysis</span> Method for analyzing stability of slopes of soil or rock

Slope stability analysis is a static or dynamic, analytical or empirical method to evaluate the stability of slopes of soil- and rock-fill dams, embankments, excavated slopes, and natural slopes in soil and rock. It is performed to assess the safe design of a human-made or natural slopes and the equilibrium conditions. Slope stability is the resistance of inclined surface to failure by sliding or collapsing. The main objectives of slope stability analysis are finding endangered areas, investigation of potential failure mechanisms, determination of the slope sensitivity to different triggering mechanisms, designing of optimal slopes with regard to safety, reliability and economics, designing possible remedial measures, e.g. barriers and stabilization.

<span class="mw-page-title-main">Numerical modeling (geology)</span> Technique to solve geological problems by computational simulation

In geology, numerical modeling is a widely applied technique to tackle complex geological problems by computational simulation of geological scenarios.

<span class="mw-page-title-main">Henk M. Haitjema</span> Dutch-American hydrologist

Hendrik Marten Haitjema is a Dutch and American engineer and hydrologist, and professor emeritus at Indiana University. He is recipient of the 2017 Keith A. Anderson Award of the National Ground Water Association. He is author of the book Analytic Element Modeling of Groundwater Flow and the widely used computational groundwater flow modeling system GFLOW.

References

  1. Strack, Otto D. L., 1943- (1989). Groundwater mechanics. Englewood Cliffs, N.J.: Prentice Hall. ISBN   0-13-365412-5. OCLC   16276592.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. Strack, Otto D. L. (August 2017). Analytical Groundwater Mechanics. doi:10.1017/9781316563144. ISBN   9781316563144 . Retrieved 2020-04-20.{{cite book}}: |website= ignored (help)
  3. Haitjema, H. M. (Henk M.) (1995). Analytic element modeling of groundwater flow. San Diego: Academic Press. ISBN   978-0-08-049910-9. OCLC   162129095.
  4. Haitjema, H.M. (1995), "Analytic Element Modeling", Analytic Element Modeling of Groundwater Flow, Elsevier, pp. 203–305, retrieved 2023-09-11
  5. Steward, David R. (2020-09-17). Analytic Element Method. Oxford University PressOxford. ISBN   0-19-885678-4.
  6. Strack, O. D. L.; Namazi, T (October 2014). "A new formulation for steady multiaquifer flow: An analytic element for piecewise constant infiltration". Water Resources Research. 50 (10): 7939–7956. doi:10.1002/2014WR015479.
  7. Janković, I.; Fiori, A.; Dagan, G. (2006). "Modeling flow and transport in highly heterogeneous three-dimensional aquifers: Ergodicity, Gaussianity, and anomalous behavior—1. Conceptual issues and numerical simulations". Water Resources Research. 42 (6): W06D12. Bibcode:2006WRR....42.6D12J. doi: 10.1029/2005WR004734 . ISSN   1944-7973.
  8. Hunt, Randall J. (2006). "Ground Water Modeling Applications Using the Analytic Element Method". Groundwater. 44 (1): 5–15. doi:10.1111/j.1745-6584.2005.00143.x. ISSN   1745-6584. PMID   16405461. S2CID   24530553.
  9. Kraemer, Stephen R. (2007). "Analytic Element Ground Water Modeling as a Research Program (1980 to 2006)". Groundwater. 45 (4): 402–408. doi:10.1111/j.1745-6584.2007.00314.x. ISSN   1745-6584. PMID   17600570. S2CID   26319150.
  10. Fitts, C. R. (2010). "Modeling aquifer systems with analytic elements and subdomains: MODELING AQUIFERS WITH ANALYTIC SUBDOMAINS". Water Resources Research. 46 (7). doi:10.1029/2009WR008331.
  11. Bakker, Mark; Strack, Otto D. L. (2003-02-10). "Analytic elements for multiaquifer flow". Journal of Hydrology. 271 (1): 119–129. Bibcode:2003JHyd..271..119B. doi:10.1016/S0022-1694(02)00319-0. ISSN   0022-1694.
  12. Strack, O. D. L.; Ausk, B. K. (August 2015). "A formulation for vertically integrated groundwater flow in a stratified coastal aquifer: STRATIFIED COASTAL AQUIFER FLOW". Water Resources Research. 51 (8): 6756–6775. doi: 10.1002/2015WR016887 .
  13. Toller, Erik A. L.; Strack, Otto D. L. (2019). "Interface Flow With Vertically Varying Hydraulic Conductivity". Water Resources Research. 55 (11): 8514–8525. Bibcode:2019WRR....55.8514T. doi:10.1029/2019WR024927. ISSN   1944-7973. S2CID   202924261.

Further read