The finite-difference frequency-domain (FDFD) method is a numerical solution method for problems usually in electromagnetism and sometimes in acoustics, based on finite-difference approximations of the derivative operators in the differential equation being solved. [1]
While "FDFD" is a generic term describing all frequency-domain finite-difference methods, the title seems to mostly describe the method as applied to scattering problems. The method shares many similarities to the finite-difference time-domain (FDTD) method, so much so that the literature on FDTD can be directly applied. The method works by transforming Maxwell's equations (or other partial differential equation) for sources and fields at a constant frequency into matrix form . The matrix A is derived from the wave equation operator, the column vector x contains the field components, and the column vector b describes the source. The method is capable of incorporating anisotropic materials, but off-diagonal components of the tensor require special treatment.
Strictly speaking, there are at least two categories of "frequency-domain" problems in electromagnetism. [2] One is to find the response to a current density J with a constant frequency ω, i.e. of the form , or a similar time-harmonic source. This frequency-domain response problem leads to an system of linear equations as described above. An early description of a frequency-domain response FDTD method to solve scattering problems was published by Christ and Hartnagel (1987). [3] Another is to find the normal modes of a structure (e.g. a waveguide) in the absence of sources: in this case the frequency ω is itself a variable, and one obtains an eigenproblem (usually, the eigenvalue λ is ω2). An early description of an FDTD method to solve electromagnetic eigenproblems was published by Albani and Bernardi (1974). [4]
The FDFD method is very similar to the finite element method (FEM), though there are some major differences. Unlike the FDTD method, there are no time steps that must be computed sequentially, thus making FDFD easier to implement. This might also lead one to imagine that FDFD is less computationally expensive; however, this is not necessarily the case. The FDFD method requires solving a sparse linear system, which even for simple problems can be 20,000 by 20,000 elements or larger, with over a million unknowns. In this respect, the FDFD method is similar to the FEM, which is a finite differential method and is also usually implemented in the frequency domain. There are efficient numerical solvers available so that matrix inversion—an extremely computationally expensive process—can be avoided. Additionally, model order reduction techniques can be employed to reduce problem size.
FDFD, and FDTD for that matter, does not lend itself well to complex geometries or multiscale structures, as the Yee grid is restricted mostly to rectangular structures. This can be circumvented by either using a very fine grid mesh (which increases computational cost), or by approximating the effects with surface boundary conditions. Non uniform gridding can lead to spurious charges at the interface boundary, as the zero divergence conditions are not maintained when the grid is not uniform along an interface boundary. E and H field continuity can be maintained to circumvent this problem by enforcing weak continuity across the interface using basis functions, as is done in FEM. Perfectly matched layer (PML) boundary conditions can also be used to truncate the grid, and avoid meshing empty space.
The FDFD equations can be rearranged in such a way as to describe a second order equivalent circuit, where nodal voltages represent the E field components and branch currents represent the H field components. This equivalent circuit representation can be extremely useful, as techniques from circuit theory can be used to analyze or simplify the problem and can be used as a spice-like tool for three-dimensional electromagnetic simulation. This susceptance element equivalent circuit (SEEC) model has the advantages of a reduced number of unknowns, only having to solve for E field components, and second order model order reduction techniques can be employed.
The FDFD method has been used to provide full wave simulation for modeling interconnects for various applications in electronic packaging. FDFD has also been used for various scattering proble
fn
fnmsnbd
hbeuhsjj
ms at optical frequencies.
Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs).
The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations, including fluid mechanics, acoustics, electromagnetics, fracture mechanics, and contact mechanics.
Finite-difference time-domain (FDTD) or Yee's method is a numerical analysis technique used for modeling computational electrodynamics. Since it is a time-domain method, FDTD solutions can cover a wide frequency range with a single simulation run, and treat nonlinear material properties in a natural way.
Harmonic balance is a method used to calculate the steady-state response of nonlinear differential equations, and is mostly applied to nonlinear electrical circuits. It is a frequency domain method for calculating the steady state, as opposed to the various time-domain steady-state methods. The name "harmonic balance" is descriptive of the method, which starts with Kirchhoff's Current Law written in the frequency domain and a chosen number of harmonics. A sinusoidal signal applied to a nonlinear component in a system will generate harmonics of the fundamental frequency. Effectively the method assumes a linear combination of sinusoids can represent the solution, then balances current and voltage sinusoids to satisfy Kirchhoff's law. The method is commonly used to simulate circuits which include nonlinear elements, and is most applicable to systems with feedback in which limit cycles occur.
Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment using computers.
A perfectly matched layer (PML) is an artificial absorbing layer for wave equations, commonly used to truncate computational regions in numerical methods to simulate problems with open boundaries, especially in the FDTD and FE methods. The key property of a PML that distinguishes it from an ordinary absorbing material is that it is designed so that waves incident upon the PML from a non-PML medium do not reflect at the interface—this property allows the PML to strongly absorb outgoing waves from the interior of a computational region without reflecting them back into the interior.
Electromagnetic field solvers are specialized programs that solve Maxwell's equations directly. They form a part of the field of electronic design automation, or EDA, and are commonly used in the design of integrated circuits and printed circuit boards. They are used when a solution from first principles or the highest accuracy is required.
In numerical analysis, finite-difference methods (FDM) are a class of numerical techniques for solving differential equations by approximating derivatives with finite differences. Both the spatial domain and time domain are discretized, or broken into a finite number of intervals, and the values of the solution at the end points of the intervals are approximated by solving algebraic equations containing finite differences and values from nearby points.
Light scattering by particles is the process by which small particles scatter light causing optical phenomena such as the blue color of the sky, and halos.
In computational electromagnetics, the scattering-matrix method (SMM) is a numerical method used to solve Maxwell's equations, related to the transfer-matrix method.
Plane wave expansion method (PWE) refers to a computational technique in electromagnetics to solve the Maxwell's equations by formulating an eigenvalue problem out of the equation. This method is popular among the photonic crystal community as a method of solving for the band structure of specific photonic crystal geometries. PWE is traceable to the analytical formulations, and is useful in calculating modal solutions of Maxwell's equations over an inhomogeneous or periodic geometry. It is specifically tuned to solve problems in a time-harmonic forms, with non-dispersive media.
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. Computers are usually used to perform the calculations required. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems.
Miniaturizing components has always been a primary goal in the semiconductor industry because it cuts production cost and lets companies build smaller computers and other devices. Miniaturization, however, has increased dissipated power per unit area and made it a key limiting factor in integrated circuit performance. Temperature increase becomes relevant for relatively small-cross-sections wires, where it may affect normal semiconductor behavior. Besides, since the generation of heat is proportional to the frequency of operation for switching circuits, fast computers have larger heat generation than slow ones, an undesired effect for chips manufacturers. This article summaries physical concepts that describe the generation and conduction of heat in an integrated circuit, and presents numerical methods that model heat transfer from a macroscopic point of view.
In physics and applied mathematics, analytical regularization is a technique used to convert boundary value problems which can be written as Fredholm integral equations of the first kind involving singular operators into equivalent Fredholm integral equations of the second kind. The latter may be easier to solve analytically and can be studied with discretization schemes like the finite element method or the finite difference method because they are pointwise convergent. In computational electromagnetics, it is known as the method of analytical regularization. It was first used in mathematics during the development of operator theory before acquiring a name.
Eigenmode expansion (EME) is a computational electrodynamics modelling technique. It is also referred to as the mode matching technique or the bidirectional eigenmode propagation method. Eigenmode expansion is a linear frequency-domain method.
In numerical mathematics, the boundary knot method (BKM) is proposed as an alternative boundary-type meshfree distance function collocation scheme.
The Kansa method is a computer method used to solve partial differential equations. Its main advantage is it is very easy to understand and program on a computer. It is much less complicated than the finite element method. Another advantage is it works well on multi variable problems. The finite element method is complicated when working with more than 3 space variables and time.
A frequency-selective surface (FSS) is any thin, repetitive surface designed to reflect, transmit or absorb electromagnetic fields based on the frequency of the field. In this sense, an FSS is a type of optical filter or metal-mesh optical filters in which the filtering is accomplished by virtue of the regular, periodic pattern on the surface of the FSS. Though not explicitly mentioned in the name, FSS's also have properties which vary with incidence angle and polarization as well - these are unavoidable consequences of the way in which FSS's are constructed. Frequency-selective surfaces have been most commonly used in the radio signals of the electromagnetic spectrum and find use in applications as diverse as the aforementioned microwave oven, antenna radomes and modern metamaterials. Sometimes frequency selective surfaces are referred to simply as periodic surfaces and are a 2-dimensional analog of the new periodic volumes known as photonic crystals.
Kane Shee-Gong Yee is a Chinese-American electrical engineer and mathematician. He is best known for introducing the finite-difference time-domain method (FDTD) in 1966.
The method of moments (MoM), also known as the moment method and method of weighted residuals, is a numerical method in computational electromagnetics. It is used in computer programs that simulate the interaction of electromagnetic fields such as radio waves with matter, for example antenna simulation programs like NEC that calculate the radiation pattern of an antenna. Generally being a frequency-domain method, it involves the projection of an integral equation into a system of linear equations by the application of appropriate boundary conditions. This is done by using discrete meshes as in finite difference and finite element methods, often for the surface. The solutions are represented with the linear combination of pre-defined basis functions; generally, the coefficients of these basis functions are the sought unknowns. Green's functions and Galerkin method play a central role in the method of moments.