Strain (mechanics)

Last updated
Strain
Other names
Strain tensor
SI unit 1
Other units
%
In SI base units m/m
Behaviour under
coord transformation
tensor
Dimension

In mechanics, strain is defined as relative deformation, compared to a reference position configuration. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered.

Contents

Strain has dimension of a length ratio, with SI base units of meter per meter (m/m). Hence strains are dimensionless and are usually expressed as a decimal fraction or a percentage. Parts-per notation is also used, e.g., parts per million or parts per billion (sometimes called "microstrains" and "nanostrains", respectively), corresponding to μm/m and nm/m.

Strain can be formulated as the spatial derivative of displacement:

where I is the identity tensor. The displacement of a body may be expressed in the form x = F(X), where X is the reference position of material points of the body; displacement has units of length and does not distinguish between rigid body motions (translations and rotations) and deformations (changes in shape and size) of the body. The spatial derivative of a uniform translation is zero, thus strains measure how much a given displacement differs locally from a rigid-body motion. [1]

A strain is in general a tensor quantity. Physical insight into strains can be gained by observing that a given strain can be decomposed into normal and shear components. The amount of stretch or compression along material line elements or fibers is the normal strain, and the amount of distortion associated with the sliding of plane layers over each other is the shear strain, within a deforming body. [2] This could be applied by elongation, shortening, or volume changes, or angular distortion. [3]

The state of strain at a material point of a continuum body is defined as the totality of all the changes in length of material lines or fibers, the normal strain, which pass through that point and also the totality of all the changes in the angle between pairs of lines initially perpendicular to each other, the shear strain, radiating from this point. However, it is sufficient to know the normal and shear components of strain on a set of three mutually perpendicular directions.

If there is an increase in length of the material line, the normal strain is called tensile strain; otherwise, if there is reduction or compression in the length of the material line, it is called compressive strain.

Strain regimes

Depending on the amount of strain, or local deformation, the analysis of deformation is subdivided into three deformation theories:

Strain measures

In each of these theories the strain is then defined differently. The engineering strain is the most common definition applied to materials used in mechanical and structural engineering, which are subjected to very small deformations. On the other hand, for some materials, e.g., elastomers and polymers, subjected to large deformations, the engineering definition of strain is not applicable, e.g. typical engineering strains greater than 1%; [4] thus other more complex definitions of strain are required, such as stretch, logarithmic strain, Green strain, and Almansi strain.

Engineering strain

Engineering strain, also known as Cauchy strain, is expressed as the ratio of total deformation to the initial dimension of the material body on which forces are applied. In the case of a material line element or fiber axially loaded, its elongation gives rise to an engineering normal strain or engineering extensional straine, which equals the relative elongation or the change in length ΔL per unit of the original length L of the line element or fibers (in meters per meter). The normal strain is positive if the material fibers are stretched and negative if they are compressed. Thus, we have

,

where e is the engineering normal strain, L is the original length of the fiber and l is the final length of the fiber.

The true shear strain is defined as the change in the angle (in radians) between two material line elements initially perpendicular to each other in the undeformed or initial configuration. The engineering shear strain is defined as the tangent of that angle, and is equal to the length of deformation at its maximum divided by the perpendicular length in the plane of force application, which sometimes makes it easier to calculate.

Stretch ratio

The stretch ratio or extension ratio (symbol λ) is an alternative measure related to the extensional or normal strain of an axially loaded differential line element. It is defined as the ratio between the final length l and the initial length L of the material line.

The extension ratio λ is related to the engineering strain e by

This equation implies that when the normal strain is zero, so that there is no deformation, the stretch ratio is equal to unity.

The stretch ratio is used in the analysis of materials that exhibit large deformations, such as elastomers, which can sustain stretch ratios of 3 or 4 before they fail. On the other hand, traditional engineering materials, such as concrete or steel, fail at much lower stretch ratios.

Logarithmic strain

The logarithmic strainε, also called, true strain or Hencky strain. [5] Considering an incremental strain (Ludwik)

the logarithmic strain is obtained by integrating this incremental strain:

where e is the engineering strain. The logarithmic strain provides the correct measure of the final strain when deformation takes place in a series of increments, taking into account the influence of the strain path. [2]

Green strain

The Green strain is defined as:

Almansi strain

The Euler-Almansi strain is defined as

Strain tensor

The (infinitesimal) strain tensor (symbol ) is defined in the International System of Quantities (ISQ), more specifically in ISO 80000-4 (Mechanics), as a "tensor quantity representing the deformation of matter caused by stress. Strain tensor is symmetric and has three linear strain and three shear strain (Cartesian) components." [6] ISO 80000-4 further defines linear strain as the "quotient of change in length of an object and its length" and shear strain as the "quotient of parallel displacement of two surfaces of a layer and the thickness of the layer". [6] Thus, strains are classified as either normal or shear. A normal strain is perpendicular to the face of an element, and a shear strain is parallel to it. These definitions are consistent with those of normal stress and shear stress.

The strain tensor can then be expressed in terms of normal and shear components as:

Geometric setting

Two-dimensional geometric deformation of an infinitesimal material element 2D geometric strain.svg
Two-dimensional geometric deformation of an infinitesimal material element

Consider a two-dimensional, infinitesimal, rectangular material element with dimensions dx × dy, which, after deformation, takes the form of a rhombus. The deformation is described by the displacement field u. From the geometry of the adjacent figure we have

and

For very small displacement gradients the squares of the derivative of and are negligible and we have

Normal strain

For an isotropic material that obeys Hooke's law, a normal stress will cause a normal strain. Normal strains produce dilations.

The normal strain in the x-direction of the rectangular element is defined by

Similarly, the normal strain in the y- and z-directions becomes

Shear strain

Shear strain
Common symbols
γ or ε
SI unit 1, or radian
Derivations from
other quantities
γ = τ / G

The engineering shear strain (γxy) is defined as the change in angle between lines AC and AB. Therefore,

From the geometry of the figure, we have

For small displacement gradients we have

For small rotations, i.e. α and β are ≪ 1 we have tan αα, tan ββ. Therefore,

thus

By interchanging x and y and ux and uy, it can be shown that γxy = γyx.

Similarly, for the yz- and xz-planes, we have

Volume strain

The volumetric strain, also called bulk strain, is the relative variation of the volume, as arising from dilation or compression; it is the first strain invariant or trace of the tensor:

Actually, if we consider a cube with an edge length a, it is a quasi-cube after the deformation (the variations of the angles do not change the volume) with the dimensions and V0 = a3, thus

as we consider small deformations,

therefore the formula.

Approximation volume deformation.png

In case of pure shear, we can see that there is no change of the volume.

Metric tensor

A strain field associated with a displacement is defined, at any point, by the change in length of the tangent vectors representing the speeds of arbitrarily parametrized curves passing through that point. A basic geometric result, due to Fréchet, von Neumann and Jordan, states that, if the lengths of the tangent vectors fulfil the axioms of a norm and the parallelogram law, then the length of a vector is the square root of the value of the quadratic form associated, by the polarization formula, with a positive definite bilinear map called the metric tensor.

See also

Related Research Articles

In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.

<span class="mw-page-title-main">Hooke's law</span> Physical law: force needed to deform a spring scales linearly with distance

In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

<span class="mw-page-title-main">Poisson's ratio</span> Measure of material deformation perpendicular to loading

In materials science and solid mechanics, Poisson's ratio (nu) is a measure of the Poisson effect, the deformation of a material in directions perpendicular to the specific direction of loading. The value of Poisson's ratio is the negative of the ratio of transverse strain to axial strain. For small values of these changes, is the amount of transversal elongation divided by the amount of axial compression. Most materials have Poisson's ratio values ranging between 0.0 and 0.5. For soft materials, such as rubber, where the bulk modulus is much higher than the shear modulus, Poisson's ratio is near 0.5. For open-cell polymer foams, Poisson's ratio is near zero, since the cells tend to collapse in compression. Many typical solids have Poisson's ratios in the range of 0.2–0.3. The ratio is named after the French mathematician and physicist Siméon Poisson.

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

<span class="mw-page-title-main">Bending</span> Strain caused by an external load

In applied mechanics, bending characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element.

<span class="mw-page-title-main">Simple shear</span> Translation which preserves parallelism

Simple shear is a deformation in which parallel planes in a material remain parallel and maintain a constant distance, while translating relative to each other.

<span class="mw-page-title-main">Euler–Bernoulli beam theory</span> Method for load calculation in construction

Euler–Bernoulli beam theory is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral loads only. By ignoring the effects of shear deformation and rotatory inertia, it is thus a special case of Timoshenko–Ehrenfest beam theory. It was first enunciated circa 1750, but was not applied on a large scale until the development of the Eiffel Tower and the Ferris wheel in the late 19th century. Following these successful demonstrations, it quickly became a cornerstone of engineering and an enabler of the Second Industrial Revolution.

In continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically-deforming materials and other fluids and biological soft tissue.

A neo-Hookean solid is a hyperelastic material model, similar to Hooke's law, that can be used for predicting the nonlinear stress-strain behavior of materials undergoing large deformations. The model was proposed by Ronald Rivlin in 1948 using invariants, though Mooney had already described a version in stretch form in 1940, and Wall had noted the equivalence in shear with the Hooke model in 1942.

Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner. Elasticity theory primarily develops formalisms for the mechanics of solid bodies and materials. The elastic potential energy equation is used in calculations of positions of mechanical equilibrium. The energy is potential as it will be converted into other forms of energy, such as kinetic energy and sound energy, when the object is allowed to return to its original shape (reformation) by its elasticity.

The J-integral represents a way to calculate the strain energy release rate, or work (energy) per unit fracture surface area, in a material. The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov and independently in 1968 by James R. Rice, who showed that an energetic contour path integral was independent of the path around a crack.

In mechanics and materials science, strain rate is the time derivative of strain of a material. Strain rate has dimension of inverse time and SI units of inverse second, s−1.

In mathematics, the Möbius energy of a knot is a particular knot energy, i.e., a functional on the space of knots. It was discovered by Jun O'Hara, who demonstrated that the energy blows up as the knot's strands get close to one another. This is a useful property because it prevents self-intersection and ensures the result under gradient descent is of the same knot type.

<span class="mw-page-title-main">Sandwich theory</span> Theory describing the behaviour of three layered structures or materials

Sandwich theory describes the behaviour of a beam, plate, or shell which consists of three layers—two facesheets and one core. The most commonly used sandwich theory is linear and is an extension of first-order beam theory. The linear sandwich theory is of importance for the design and analysis of sandwich panels, which are of use in building construction, vehicle construction, airplane construction and refrigeration engineering.

In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.

<span class="mw-page-title-main">Plate theory</span>

In continuum mechanics, plate theories are mathematical descriptions of the mechanics of flat plates that draw on the theory of beams. Plates are defined as plane structural elements with a small thickness compared to the planar dimensions. The typical thickness to width ratio of a plate structure is less than 0.1. A plate theory takes advantage of this disparity in length scale to reduce the full three-dimensional solid mechanics problem to a two-dimensional problem. The aim of plate theory is to calculate the deformation and stresses in a plate subjected to loads.

<span class="mw-page-title-main">Kirchhoff–Love plate theory</span>

The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler-Bernoulli beam theory and was developed in 1888 by Love using assumptions proposed by Kirchhoff. The theory assumes that a mid-surface plane can be used to represent a three-dimensional plate in two-dimensional form.

<span class="mw-page-title-main">Uflyand-Mindlin plate theory</span>

The Uflyand-Mindlin theory of vibrating plates is an extension of Kirchhoff–Love plate theory that takes into account shear deformations through-the-thickness of a plate. The theory was proposed in 1948 by Yakov Solomonovich Uflyand (1916-1991) and in 1951 by Raymond Mindlin with Mindlin making reference to Uflyand's work. Hence, this theory has to be referred to as Uflyand-Mindlin plate theory, as is done in the handbook by Elishakoff, and in papers by Andronov, Elishakoff, Hache and Challamel, Loktev, Rossikhin and Shitikova and Wojnar. In 1994, Elishakoff suggested to neglect the fourth-order time derivative in Uflyand-Mindlin equations. A similar, but not identical, theory in static setting, had been proposed earlier by Eric Reissner in 1945. Both theories are intended for thick plates in which the normal to the mid-surface remains straight but not necessarily perpendicular to the mid-surface. The Uflyand-Mindlin theory is used to calculate the deformations and stresses in a plate whose thickness is of the order of one tenth the planar dimensions while the Kirchhoff–Love theory is applicable to thinner plates.

In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a map associated to a deformation of a scheme or complex manifold X, taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X.

References

  1. Lubliner, Jacob (2008). Plasticity Theory (PDF) (Revised ed.). Dover Publications. ISBN   978-0-486-46290-5. Archived from the original (PDF) on 2010-03-31.
  2. 1 2 Rees, David (2006). Basic Engineering Plasticity: An Introduction with Engineering and Manufacturing Applications. Butterworth-Heinemann. ISBN   0-7506-8025-3. Archived from the original on 2017-12-22.
  3. "Earth."Encyclopædia Britannica from Encyclopædia Britannica 2006 Ultimate Reference Suite DVD .[2009].
  4. Rees, David (2006). Basic Engineering Plasticity: An Introduction with Engineering and Manufacturing Applications. Butterworth-Heinemann. p. 41. ISBN   0-7506-8025-3. Archived from the original on 2017-12-22.
  5. Hencky, H. (1928). "Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen". Zeitschrift für technische Physik. 9: 215–220.
  6. 1 2 "ISO 80000-4:2019". ISO. 2013-08-20. Retrieved 2023-08-28.