Articles about |
Electromagnetism |
---|
Part of a series on |
Continuum mechanics |
---|
Electrorheological (ER) fluids are suspensions of extremely fine non-conducting but electrically active particles (up to 50 micrometres diameter) in an electrically insulating fluid. The apparent viscosity of these fluids changes reversibly by an order of up to 100,000 in response to an electric field. For example, a typical ER fluid can go from the consistency of a liquid to that of a gel, and back, with response times on the order of milliseconds. [1] The effect is sometimes called the Winslow effect after its discoverer, the American inventor Willis Winslow, who obtained a US patent on the effect in 1947 [2] and wrote an article published in 1949. [3]
The change in apparent viscosity is dependent on the applied electric field, i.e. the potential divided by the distance between the plates. The change is not a simple change in viscosity, hence these fluids are now known as ER fluids, rather than by the older term Electro Viscous fluids. The effect is better described as an electric field dependent shear yield stress. When activated an ER fluid behaves as a Bingham plastic (a type of viscoelastic material), with a yield point which is determined by the electric field strength. After the yield point is reached, the fluid shears as a fluid, i.e. the incremental shear stress is proportional to the rate of shear (in a Newtonian fluid there is no yield point and stress is directly proportional to shear). Hence the resistance to motion of the fluid can be controlled by adjusting the applied electric field.
ER fluids are a type of smart fluid. A simple ER fluid can be made by mixing cornflour in a light vegetable oil or (better) silicone oil.
There are two main theories to explain the effect: the interfacial tension or 'water bridge' theory, [4] and the electrostatic theory. The water bridge theory assumes a three phase system, the particles contain the third phase which is another liquid (e.g. water) immiscible with the main phase liquid (e.g. oil). With no applied electric field the third phase is strongly attracted to and held within the particles. This means the ER fluid is a suspension of particles, which behaves as a liquid. When an electric field is applied the third phase is driven to one side of the particles by electro osmosis and binds adjacent particles together to form chains. This chain structure means the ER fluid has become a solid. The electrostatic theory assumes just a two phase system, with dielectric particles forming chains aligned with an electric field in an analogous way to how magnetorheological fluid (MR) fluids work. An ER fluid has been constructed with the solid phase made from a conductor coated in an insulator. [5] This ER fluid clearly cannot work by the water bridge model. However, although demonstrating that some ER fluids work by the electrostatic effect, it does not prove that all ER fluids do so. The advantage of having an ER fluid which operates on the electrostatic effect is the elimination of leakage current, i.e. potentially there is no direct current. Of course, since ER devices behave electrically as capacitors, and the main advantage of the ER effect is the speed of response, an alternating current is to be expected.
The particles are electrically active. They can be ferroelectric or, as mentioned above, made from a conducting material coated with an insulator, or electro-osmotically active particles. In the case of ferroelectric or conducting material, the particles would have a high dielectric constant. There may be some confusion here as to the dielectric constant of a conductor, but "if a material with a high dielectric constant is placed in an electric field, the magnitude of that field will be measurably reduced within the volume of the dielectric" (see main page: Dielectric constant), and since the electric field is zero in an ideal conductor, then in this context the dielectric constant of a conductor is infinite.
Another factor that influences the ER effect is the geometry of the electrodes. The introduction of parallel grooved electrodes showed slight increase in the ER effect but perpendicular[ clarification needed ] grooved electrodes doubled the ER effect. [6] A much larger increase in ER effect can be obtained by coating the electrodes with electrically polarisable materials. This turns the usual disadvantage of dielectrophoresis into a useful effect. It also has the effect of reducing leakage currents in the ER fluid. [7]
The giant electrorheological (GER) fluid was discovered in 2003, [8] and is able to sustain higher yield strengths than many other ER fluids. The GER fluid consists of Urea coated nanoparticles of Barium Titanium Oxalate suspended in silicone oil. The high yield strength is due to the high dielectric constant of the particles, the small size of the particles and the Urea coating. Another advantage of the GER is that the relationship between the electrical field strength and the yield strength is linear after the electric field reaches 1 kV/mm. The GER is a high yield strength, but low electrical field strength and low current density fluid compared to many other ER fluids. The procedure for preparation of the suspension is given in. [8] The major concern is the use of oxalic acid for the preparation of the particles as it is a strong organic acid.
The normal application of ER fluids is in fast acting hydraulic valves [9] and clutches, with the separation between plates being in the order of 1 mm and the applied potential being in the order of 1 kV. In simple terms, when the electric field is applied, an ER hydraulic valve is shut or the plates of an ER clutch are locked together, when the electric field is removed the ER hydraulic valve is open or the clutch plates are disengaged. Other common applications are in ER brakes [10] (think of a brake as a clutch with one side fixed) and shock absorbers [11] (which can be thought of as closed hydraulic systems where the shock is used to try to pump fluid through a valve).
There are many novel uses for these fluids. Potential uses are in accurate abrasive polishing [12] and as haptic controllers and tactile displays. [13]
ER fluid has also been proposed to have potential applications in flexible electronics, with the fluid incorporated in elements such as rollable screens and keypads, in which the viscosity-changing qualities of the fluid allowing the rollable elements to become rigid for use, and flexible to roll and retract for storing when not in use. Motorola filed a patent application for mobile device applications in 2006. [14]
A major problem is that ER fluids are suspensions, hence in time they tend to settle out, so advanced ER fluids tackle this problem by means such as matching the densities of the solid and liquid components, or by using nanoparticles, which brings ER fluids into line with the development of magnetorheological fluids. Another problem is that the breakdown voltage of air is ~ 3 kV/mm, which is near the electric field needed for ER devices to operate.
An advantage is that an ER device can control considerably more mechanical power than the electrical power used to control the effect, i.e. it can act as a power amplifier. But the main advantage is the speed of response. There are few other effects able to control such large amounts of mechanical or hydraulic power so rapidly.
Unfortunately, the increase in apparent viscosity experienced by most Electrorheological fluids used in shear or flow modes is relatively limited. The ER fluid changes from a Newtonian liquid to a partially crystalline "semi-hard slush". However, an almost complete liquid to solid phase change can be obtained when the electrorheological fluid additionally experiences compressive stress. [15] This effect has been used to provide electrorheological Braille displays [16] and very effective clutches. [17]
Rheology is the study of the flow of matter, primarily in a fluid state but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force. Rheology is the branch of physics that deals with the deformation and flow of materials, both solids and liquids.
In chemistry, electro-osmotic flow is the motion of liquid induced by an applied potential across a porous material, capillary tube, membrane, microchannel, or any other fluid conduit. Because electro-osmotic velocities are independent of conduit size, as long as the electrical double layer is much smaller than the characteristic length scale of the channel, electro-osmotic flow will have little effect. Electro-osmotic flow is most significant when in small channels, and is an essential component in chemical separation techniques, notably capillary electrophoresis. Electro-osmotic flow can occur in natural unfiltered water, as well as buffered solutions.
Electrowetting is the modification of the wetting properties of a surface with an applied electric field.
A magnetorheological fluid is a type of smart fluid in a carrier fluid, usually a type of oil. When subjected to a magnetic field, the fluid greatly increases its apparent viscosity, to the point of becoming a viscoelastic solid. Importantly, the yield stress of the fluid when in its active ("on") state can be controlled very accurately by varying the magnetic field intensity. The upshot is that the fluid's ability to transmit force can be controlled with an electromagnet, which gives rise to its many possible control-based applications.
Ferrofluid is a liquid that is attracted to the poles of a magnet. It is a colloidal liquid made of nanoscale ferromagnetic or ferrimagnetic particles suspended in a carrier fluid. Each magnetic particle is thoroughly coated with a surfactant to inhibit clumping. Large ferromagnetic particles can be ripped out of the homogeneous colloidal mixture, forming a separate clump of magnetic dust when exposed to strong magnetic fields. The magnetic attraction of tiny nanoparticles is weak enough that the surfactant's Van der Waals force is sufficient to prevent magnetic clumping or agglomeration. Ferrofluids usually do not retain magnetization in the absence of an externally applied field and thus are often classified as "superparamagnets" rather than ferromagnets.
Joule heating is the process by which the passage of an electric current through a conductor produces heat.
A smart fluid is a fluid whose properties can be changed by applying an electric field or a magnetic field.
A dilatant material is one in which viscosity increases with the rate of shear strain. Such a shear thickening fluid, also known by the initialism STF, is an example of a non-Newtonian fluid. This behaviour is usually not observed in pure materials, but can occur in suspensions.
Electrohydrodynamics (EHD), also known as electro-fluid-dynamics (EFD) or electrokinetics, is the study of the dynamics of electrically charged fluids. Electrohydrodynamics (EHD) is a joint domain of electrodynamics and fluid dynamics mainly focused on the fluid motion induced by electric fields. EHD, in its simplest form, involves the application of an electric field to a fluid medium, resulting in fluid flow, form, or properties manipulation. These mechanisms arise from the interaction between the electric fields and charged particles or polarization effects within the fluid. The generation and movement of charge carriers (ions) in a fluid subjected to an electric field are the underlying physics of all EHD-based technologies.
Dielectrophoresis (DEP) is a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field. This force does not require the particle to be charged. All particles exhibit dielectrophoretic activity in the presence of electric fields. However, the strength of the force depends strongly on the medium and particles' electrical properties, on the particles' shape and size, as well as on the frequency of the electric field. Consequently, fields of a particular frequency can manipulate particles with great selectivity. This has allowed, for example, the separation of cells or the orientation and manipulation of nanoparticles and nanowires. Furthermore, a study of the change in DEP force as a function of frequency can allow the electrical properties of the particle to be elucidated.
An electroactive polymer (EAP) is a polymer that exhibits a change in size or shape when stimulated by an electric field. The most common applications of this type of material are in actuators and sensors. A typical characteristic property of an EAP is that they will undergo a large amount of deformation while sustaining large forces.
The name electrospray is used for an apparatus that employs electricity to disperse a liquid or for the fine aerosol resulting from this process. High voltage is applied to a liquid supplied through an emitter. Ideally the liquid reaching the emitter tip forms a Taylor cone, which emits a liquid jet through its apex. Varicose waves on the surface of the jet lead to the formation of small and highly charged liquid droplets, which are radially dispersed due to Coulomb repulsion.
Rheometry generically refers to the experimental techniques used to determine the rheological properties of materials, that is the qualitative and quantitative relationships between stresses and strains and their derivatives. The techniques used are experimental. Rheometry investigates materials in relatively simple flows like steady shear flow, small amplitude oscillatory shear, and extensional flow.
Electroacoustic phenomena arise when ultrasound propagates through a fluid containing ions. The associated particle motion generates electric signals because ions have electric charge. This coupling between ultrasound and electric field is called electroacoustic phenomena. The fluid might be a simple Newtonian liquid, or complex heterogeneous dispersion, emulsion or even a porous body. There are several different electroacoustic effects depending on the nature of the fluid.
In surface science, a double layer is a structure that appears on the surface of an object when it is exposed to a fluid. The object might be a solid particle, a gas bubble, a liquid droplet, or a porous body. The DL refers to two parallel layers of charge surrounding the object. The first layer, the surface charge, consists of ions which are adsorbed onto the object due to chemical interactions. The second layer is composed of ions attracted to the surface charge via the Coulomb force, electrically screening the first layer. This second layer is loosely associated with the object. It is made of free ions that move in the fluid under the influence of electric attraction and thermal motion rather than being firmly anchored. It is thus called the "diffuse layer".
A magnetorheological damper or magnetorheological shock absorber is a damper filled with magnetorheological fluid, which is controlled by a magnetic field, usually using an electromagnet. This allows the damping characteristics of the shock absorber to be continuously controlled by varying the power of the electromagnet. Fluid viscosity increases within the damper as electromagnet intensity increases. This type of shock absorber has several applications, most notably in semi-active vehicle suspensions which may adapt to road conditions, as they are monitored through sensors in the vehicle, and in prosthetic limbs.
Sedimentation potential occurs when dispersed particles move under the influence of either gravity or centrifugation or electricity in a medium. This motion disrupts the equilibrium symmetry of the particle's double layer. While the particle moves, the ions in the electric double layer lag behind due to the liquid flow. This causes a slight displacement between the surface charge and the electric charge of the diffuse layer. As a result, the moving particle creates a dipole moment. The sum of all of the dipoles generates an electric field which is called sedimentation potential. It can be measured with an open electrical circuit, which is also called sedimentation current.
In chemical analysis, capillary electrochromatography (CEC) is a chromatographic technique in which the mobile phase is driven through the chromatographic bed by electro-osmosis. Capillary electrochromatography is a combination of two analytical techniques, high-performance liquid chromatography and capillary electrophoresis. Capillary electrophoresis aims to separate analytes on the basis of their mass-to-charge ratio by passing a high voltage across ends of a capillary tube, which is filled with the analyte. High-performance liquid chromatography separates analytes by passing them, under high pressure, through a column filled with stationary phase. The interactions between the analytes and the stationary phase and mobile phase lead to the separation of the analytes. In capillary electrochromatography capillaries, packed with HPLC stationary phase, are subjected to a high voltage. Separation is achieved by electrophoretic migration of solutes and differential partitioning.
A flowFET is a microfluidic component which allows the rate of flow of liquid in a microfluidic channel to be modulated by the electrical potential applied to it. In this way, it behaves as a microfluidic analogue to the field effect transistor, except that in the flowFET the flow of liquid takes the place of the flow of electric current. Indeed, the name of the flowFET is derived from the naming convention of electronic FETs.
Three-dimensional electrical capacitance tomography also known as electrical capacitance volume tomography (ECVT) is a non-invasive 3D imaging technology applied primarily to multiphase flows. It was introduced in the early 2000s as an extension of the conventional two-dimensional ECT. In conventional electrical capacitance tomography, sensor plates are distributed around a surface of interest. Measured capacitance between plate combinations is used to reconstruct 2D images (tomograms) of material distribution. Because the ECT sensor plates are required to have lengths on the order of the domain cross-section, 2D ECT does not provide the required resolution in the axial dimension. In ECT, the fringing field from the edges of the plates is viewed as a source of distortion to the final reconstructed image and is thus mitigated by guard electrodes. 3D ECT exploits this fringing field and expands it through 3D sensor designs that deliberately establish an electric field variation in all three dimensions. In 3D tomography, the data are acquired in 3D geometry, and the reconstruction algorithm produces the three-dimensional image directly, in contrast to 2D tomography, where 3D information might be obtained by stacking 2D slices reconstructed individually.
{{cite book}}
: |journal=
ignored (help)