Electrowetting

Last updated

Electrowetting is the modification of the wetting properties of a surface (which is typically hydrophobic) with an applied electric field.

Contents

History

The electrowetting of mercury and other liquids on variably charged surfaces was probably first explained by Gabriel Lippmann in 1875 [1] and was certainly observed much earlier. A. N. Frumkin used surface charge to change the shape of water drops in 1936. [2] The term electrowetting was first introduced in 1981 by G. Beni and S. Hackwood to describe an effect proposed for designing a new type of display device for which they received a patent. [3] The use of a "fluid transistor" in microfluidic circuits for manipulating chemical and biological fluids was first investigated by J. Brown in 1980 and later funded in 1984–1988 under NSF Grants 8760730 & 8822197, [4] employing insulating dielectric and hydrophobic layer(s) (EWOD), immiscible fluids, DC or RF power; and mass arrays of miniature interleaved (saw tooth) electrodes with large or matching indium tin oxide (ITO) electrodes to digitally relocate nano droplets in linear, circular, and directed paths, pump or mix fluids, fill reservoirs, and control fluid flow electronically or optically. Later, in collaboration with J. Silver at the NIH, EWOD-based electrowetting was disclosed for single and immiscible fluids to move, separate, hold, and seal arrays of digital PCR sub-samples. [5]

Electrowetting using an insulating layer on top of a bare electrode was later studied by Bruno Berge in 1993. [6] Electrowetting on this dielectric-coated surface is called electrowetting-on-dielectric (EWOD) [7] to distinguish it from the conventional electrowetting on the bare electrode. Electrowetting can be demonstrated by replacing the metal electrode in the EWOD system by a semiconductor. [8] [9] Electrowetting is also observed when a reverse bias is applied to a conducting droplet (e.g. mercury) which has been placed directly onto a semiconductor surface (e.g. silicon) to form a Schottky contact in a Schottky diode electrical circuit configuration – this effect has been termed ‘Schottky electrowetting’. [10]

Microfluidic manipulation of liquids by electrowetting was demonstrated first with mercury droplets in water [11] and later with water in air [7] and water in oil. [12] Manipulation of droplets on a two-dimensional path was demonstrated later. [13] [14] If the liquid is discretized and programmably manipulated, the approach is called "Digital Microfluidic Circuits" [15] [16] or "Digital Microfluidics". [17] Discretization by electrowetting-on-dielectric (EWOD) was first demonstrated by Cho, Moon, and Kim. [18]

Electrowetting theory

Liquid, Isolator, Substrate Electrowetting (svg).svg
Liquid, Isolator, Substrate

The electrowetting effect has been defined as "the change in solid-electrolyte contact angle due to an applied potential difference between the solid and the electrolyte". The phenomenon of electrowetting can be understood in terms of the forces that result from the applied electric field. [19] [20] The fringing field at the corners of the electrolyte droplet tends to pull the droplet down onto the electrode, lowering the macroscopic contact angle and increasing the droplet contact area. Alternatively, electrowetting can be viewed from a thermodynamic perspective. Since the surface tension of an interface is defined as the Helmholtz free energy required to create a certain area of that surface, it contains both chemical and electrical components, and charge becomes a significant term in that equation. The chemical component is just the natural surface tension of the solid/electrolyte interface with no electric field. The electrical component is the energy stored in the capacitor formed between the conductor and the electrolyte.

The simplest derivation of electrowetting behavior is given by considering its thermodynamic model. While it is possible to obtain a detailed numerical model of electrowetting by considering the precise shape of the electrical fringing field and how it affects the local droplet curvature, such solutions are mathematically and computationally complex. The thermodynamic derivation proceeds as follows. Defining the relevant surface tensions as:

– The total, electrical and chemical, surface tension between the electrolyte and the conductor
– The surface tension between the electrolyte and the conductor at zero electric field
– The surface tension between the conductor and the external ambient
– The surface tension between the electrolyte and the external ambient
– The macroscopic contact angle between the electrolyte and the dielectric
– The capacitance per area of the interface, єrє0/t, for a uniform dielectric of thickness t and permittivity єr
– The effective applied voltage, integral of the electric field from the electrolyte to the conductor

Relating the total surface tension to its chemical and electrical components gives:

The contact angle is given by the Young-Dupre equation, with the only complication being that the total surface energy is used:

Combining the two equations gives the dependence of θ on the effective applied voltage as:

An additional complication is that liquids also exhibit a saturation phenomenon: after certain voltage, the saturation voltage, the further increase of voltage will not change the contact angle, and with extreme voltages the interface will only show instabilities.

However, surface charge is but one component of surface energy, and other components are certainly perturbed by induced charge. So, a complete explanation of electrowetting is unquantified, but it should not be surprising that these limits exist.

It was recently shown by Klarman et al. [21] that contact angle saturation can be explained as a universal effect- regardless of materials used – if electrowetting is observed as a global phenomenon affected by the detailed geometry of the system. Within this framework it is predicted that reversed electrowetting is also possible (contact angle grows with the voltage).

It has also been experimentally shown by Chevaloitt [22] that contact angle saturation is invariant to all materials parameters, thus revealing that when good materials are utilized, most saturation theories are invalid. This same paper further suggests that electrohydrodynamic instability may be the source of saturation, a theory that is unproven but being suggested by several other groups as well.

Reverse electrowetting

Reverse electrowetting [23] can be used to harvest energy via a mechanical-to-electrical engineering scheme.

Electrowetting on liquid-infused film (EWOLF)

Another electrowetting configuration is electrowetting on liquid-infused film. The liquid-infused film is achieved by locking a liquid lubricant in a porous membrane through the delicate control of wetting properties of the liquid and solid phases. Taking advantage of the negligible contact line pinning at the liquid-liquid interface, the droplet response in EWOLF can be electrically addressed with enhanced degree of switchability and reversibility compared to the conventional EWOD. Moreover, the infiltration of liquid lubricant phase in the porous membrane also efficiently enhances the viscous energy dissipation, suppressing the droplet oscillation and leading to fast response without sacrificing the desired electrowetting reversibility. Meanwhile, the damping effect associated with the EWOLF can be tailored by manipulating the viscosity and thickness of liquid lubricant. [24]

Opto- and photoelectrowetting

Optoelectrowetting, [25] [26] and photoelectrowetting [27] are both optically-induced electrowetting effects. Optoelectrowetting involves the use of a photoconductor whereas photoelectrowetting use a photocapacitance and can be observed if the conductor in the liquid/insulator/conductor stack used for electrowetting is replaced by a semiconductor. By optically modulating the number of carriers in the space-charge region of the semiconductor, the contact angle of a liquid droplet can be altered in a continuous way. This effect can be explained by a modification of the Young-Lippmann equation.

Materials

For reasons that are still under investigation, only a limited set of surfaces exhibit the theoretically predicted electrowetting behavior. Because of this, alternative materials that can be used to coat and functionalize the surface are used to create the expected wetting behavior. For example, amorphous fluoropolymers are widely used electrowetting coating materials, and it has been found that the behavior of these fluoropolymers can be enhanced by the appropriate surface patterning. These fluoropolymers coat the necessary conductive electrode, typically made of aluminum foil or indium tin oxide (ITO), to create the desired electrowetting properties. [28] Three types of such polymers are commercially available: FluoroPel hydrophobic and superhydrophobic V-series polymers are sold by Cytonix, CYTOP is sold by Asahi Glass Co., and Teflon AF is sold by DuPont. Other surface materials such as SiO2 and gold on glass have been used. [29] [30] These materials allow the surfaces themselves to act as the ground electrodes for the electric current. [30]

Applications

Electrowetting is now used in a wide range of applications, [31] from modular to adjustable lenses, electronic displays (e-paper), electronic outdoor displays, and switches for optical fibers. Electrowetting has recently been evoked for manipulating soft matter particularly, suppressing coffee ring effect. [32] Furthermore, filters with electrowetting functionality has been suggested for cleaning oil spills and separating oil-water mixtures. [33]

International meeting

An international meeting for electrowetting is held every two years. The most recent meeting was held on June 18 to 20, 2018, at the University of Twente, the Netherlands. [34]

The previous hosts of the electrowetting meeting are: Mons (1999), Eindhoven (2000), Grenoble (2002), Blaubeuren (2004), Rochester (2006), Los Angeles (2008), Pohang (2010), Athens (2012), Cincinnati (2014), Taipei (2016).

See also

Related Research Articles

<span class="mw-page-title-main">Hydrophobe</span> Molecule or surface that has no attraction to water

In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water.

<span class="mw-page-title-main">Surface tension</span> Tendency of a liquid surface to shrink to reduce surface area

Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects to float on a water surface without becoming even partly submerged.

<span class="mw-page-title-main">Digital microfluidics</span>

Digital microfluidics (DMF) is a platform for lab-on-a-chip systems that is based upon the manipulation of microdroplets. Droplets are dispensed, moved, stored, mixed, reacted, or analyzed on a platform with a set of insulated electrodes. Digital microfluidics can be used together with analytical analysis procedures such as mass spectrometry, colorimetry, electrochemical, and electrochemiluminescense.

<span class="mw-page-title-main">Electrical breakdown</span> Conduction of electricity through an insulator under sufficiently high voltage

In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material, subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All insulating materials undergo breakdown when the electric field caused by an applied voltage exceeds the material's dielectric strength. The voltage at which a given insulating object becomes conductive is called its breakdown voltage and, in addition to its dielectric strength, depends on its size and shape, and the location on the object at which the voltage is applied. Under sufficient voltage, electrical breakdown can occur within solids, liquids, or gases. However, the specific breakdown mechanisms are different for each kind of dielectric medium.

<span class="mw-page-title-main">Electrohydrodynamics</span> Study of electrically conducting fluids in the presence of electric fields

Electrohydrodynamics (EHD), also known as electro-fluid-dynamics (EFD) or electrokinetics, is the study of the dynamics of electrically charged fluids. It is the study of the motions of ionized particles or molecules and their interactions with electric fields and the surrounding fluid. The term may be considered to be synonymous with the rather elaborate electrostrictive hydrodynamics. ESHD covers the following types of particle and fluid transport mechanisms: electrophoresis, electrokinesis, dielectrophoresis, electro-osmosis, and electrorotation. In general, the phenomena relate to the direct conversion of electrical energy into kinetic energy, and vice versa.

<span class="mw-page-title-main">Wetting</span> Ability of a liquid to maintain contact with a solid surface

Wetting is the ability of a liquid to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together. This happens in presence of a gaseous phase or another liquid phase not miscible with the first one. The degree of wetting (wettability) is determined by a force balance between adhesive and cohesive forces. There are two types of wetting: non-reactive wetting and reactive wetting.

<span class="mw-page-title-main">Dewetting</span> Retraction of a fluid from a surface it was forced to cover

In fluid mechanics, dewetting is one of the processes that can occur at a solid–liquid, solid–solid or liquid–liquid interface. Generally, dewetting describes the process of retraction of a fluid from a non-wettable surface it was forced to cover. The opposite process—spreading of a liquid on a substrate—is called wetting. The factor determining the spontaneous spreading and dewetting for a drop of liquid placed on a solid substrate with ambient gas, is the so-called spreading coefficient S:

<span class="mw-page-title-main">Contact angle</span> The angle between a liquid–vapor interface and a solid surface

The contact angle is the angle between a liquid surface and a solid surface where they meet. More specifically, it is the angle between the surface tangent on the liquid–vapor interface and the tangent on the solid–liquid interface at their intersection. It quantifies the wettability of a solid surface by a liquid via the Young equation.

The name electrospray is used for an apparatus that employs electricity to disperse a liquid or for the fine aerosol resulting from this process. High voltage is applied to a liquid supplied through an emitter. Ideally the liquid reaching the emitter tip forms a Taylor cone, which emits a liquid jet through its apex. Varicose waves on the surface of the jet lead to the formation of small and highly charged liquid droplets, which are radially dispersed due to Coulomb repulsion.

<span class="mw-page-title-main">Cassie's law</span>

Cassie's law, or the Cassie equation, describes the effective contact angle θc for a liquid on a chemically heterogeneous surface, i.e. the surface of a composite material consisting of different chemistries, that is non uniform throughout. Contact angles are important as they quantify a surface's wettability, the nature of solid-fluid intermolecular interactions. Cassie's law is reserved for when a liquid completely covers both smooth and rough heterogeneous surfaces.

<span class="mw-page-title-main">Ultrahydrophobicity</span> Material property of extreme resistance to wetting

In chemistry and materials science, ultrahydrophobic surfaces are highly hydrophobic, i.e., extremely difficult to wet. The contact angles of a water droplet on an ultrahydrophobic material exceed 150°. This is also referred to as the lotus effect, after the superhydrophobic leaves of the lotus plant. A droplet striking these kinds of surfaces can fully rebound like an elastic ball. Interactions of bouncing drops can be further reduced using special superhydrophobic surfaces that promote symmetry breaking, pancake bouncing or waterbowl bouncing.

In fluid statics, capillary pressure is the pressure between two immiscible fluids in a thin tube, resulting from the interactions of forces between the fluids and solid walls of the tube. Capillary pressure can serve as both an opposing or driving force for fluid transport and is a significant property for research and industrial purposes. It is also observed in natural phenomena.

<span class="mw-page-title-main">Capillary length</span>

The capillary length or capillary constant, is a length scaling factor that relates gravity and surface tension. It is a fundamental physical property that governs the behavior of menisci, and is found when body forces (gravity) and surface forces are in equilibrium.

<span class="mw-page-title-main">Double layer (surface science)</span> Molecular interface between a surface and a fluid

In surface science, a double layer is a structure that appears on the surface of an object when it is exposed to a fluid. The object might be a solid particle, a gas bubble, a liquid droplet, or a porous body. The DL refers to two parallel layers of charge surrounding the object. The first layer, the surface charge, consists of ions which are adsorbed onto the object due to chemical interactions. The second layer is composed of ions attracted to the surface charge via the Coulomb force, electrically screening the first layer. This second layer is loosely associated with the object. It is made of free ions that move in the fluid under the influence of electric attraction and thermal motion rather than being firmly anchored. It is thus called the "diffuse layer".

Gas diffusion electrodes (GDE) are electrodes with a conjunction of a solid, liquid and gaseous interface, and an electrical conducting catalyst supporting an electrochemical reaction between the liquid and the gaseous phase.

If an electric field is applied parallel to the surface of a liquid and this surface has a net charge then the surface and so the liquid will move in response to the field. This is electrocapillary flow, an example of electrocapillarity. Electrocapillary phenomena are phenomena related to changes in the surface free energy of charged fluid interfaces, for example that of the dropping mercury electrode (DME), or in principle, any electrode, as the electrode potential changes or the electrolytic solution composition and concentration change.

Nanofluidic circuitry is a nanotechnology aiming for control of fluids in nanometer scale. Due to the effect of an electrical double layer within the fluid channel, the behavior of nanofluid is observed to be significantly different compared with its microfluidic counterparts. Its typical characteristic dimensions fall within the range of 1–100 nm. At least one dimension of the structure is in nanoscopic scale. Phenomena of fluids in nano-scale structure are discovered to be of different properties in electrochemistry and fluid dynamics.

<span class="mw-page-title-main">Photoelectrowetting</span>

Photoelectrowetting is a modification of the wetting properties of a surface using incident light.

Optoelectrowetting (OEW) is a method of liquid droplet manipulation used in microfluidics applications. This technique builds on the principle of electrowetting, which has proven useful in liquid actuation due to fast switching response times and low power consumption. Where traditional electrowetting runs into challenges, however, such as in the simultaneous manipulation of multiple droplets, OEW presents a lucrative alternative that is both simpler and cheaper to produce. OEW surfaces are easy to fabricate, since they require no lithography, and have real-time, reconfigurable, large-scale manipulation control, due to its reaction to light intensity.

The rise in core (RIC) method is an alternate reservoir wettability characterization method described by S. Ghedan and C. H. Canbaz in 2014. The method enables estimation of all wetting regions such as strongly water wet, intermediate water, oil wet and strongly oil wet regions in relatively quick and accurate measurements in terms of Contact angle rather than wettability index.

References

  1. Gabriel Lippmann, "Relation entre les phénomènes électriques et capillaires." Ann. Chim. Phys, 5:494, 1875
  2. A. Frumkin, Об явлениях смачивания и прилипания пузырьков, I (On the phenomena of wetting and adhesion of the bubbles, I). Zhurnal Fizicheskoi Khimii (J Phys Chem USSR), 12: 337-345 (1938).
  3. Beni, G.; Hackwood, S. (1981-02-15). "Electro‐wetting displays". Applied Physics Letters. 38 (4). AIP Publishing: 207–209. Bibcode:1981ApPhL..38..207B. doi:10.1063/1.92322. ISSN   0003-6951.
  4. [ permanent dead link ]
  5. USpatent 6143496,Brown, et al.,"Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly",issued November 7, 2000
  6. B. Berge, "Électrocapillarité et mouillage de films isolants par l'eau", C. R. Acad. Sci. Paris, t. 317, Série II, p. 157-163, 1993.
  7. 1 2 J. Lee, "Microactuation by Continuous Electrowetting and Electrowetting: Theory, Fabrication, and Demonstration," PhD Thesis, University of California, Los Angeles, 2000
  8. S. Arscott “Electrowetting and semiconductors” RSC Advances 4, 29223 (2014). doi : 10.1039/C4RA04187A.
  9. C. Palma and R. Deegan “Electrowetting on semiconductors” Appl. Phys. Lett. 106, 014106 (2015). doi : 10.1063/1.4905348.
  10. S. Arscott and M. Gaudet "Electrowetting at a liquid metal–semiconductor junction" Appl. Phys. Lett. 103, 074104 (2013). doi : 10.1063/1.4818715.
  11. J. Lee and C.-J. Kim, "Liquid Micromotor Driven by Continuous Electrowetting", Proc. IEEE Micro Electro Mechanical Systems Workshop, Heidelberg, Germany, Jan. 1998, pp. 538–543
  12. Pollack, Michael G.; Fair, Richard B.; Shenderov, Alexander D. (2000-09-11). "Electrowetting-based actuation of liquid droplets for microfluidic applications". Applied Physics Letters. 77 (11). AIP Publishing: 1725–1726. Bibcode:2000ApPhL..77.1725P. doi:10.1063/1.1308534. ISSN   0003-6951.
  13. S.-K. Fan, P.-P. de Guzman, and C.-J. Kim, "EWOD Driving of Droplet on NxM Grid Using Single-Layer Electrode Patterns, Tech. Dig., Solid-State Sensor, Actuator, and Microsystems Workshop, Hilton Head Island, SC, June 2002, pp. 134–137
  14. J. Gong and C.-J. Kim, "Two-Dimensional Digital Microfluidic System by Multi-Layer Printed Circuit Board", Proc. IEEE Conf. MEMS, Orlando, FL, Jan. 2005, pp. 726–729
  15. C.-J. Kim, "Integrated Digital Microfluidic Circuits Operated by Electrowetting-on-Dielectrics (EWOD) Principle", granted in 2000 by Defense Advanced Research Projects Agency (DARPA), award number N66001-0130-3664
  16. C.-J. Kim, "Micropumping by Electrowetting", Proceedings of the ASME International Mechanical Engineering Congress and Exposition, November 2001, New York, NY, IMECE2001/HTD-24200.
  17. M. G. Pollack, Electrowetting-Based Microactuation Of Droplets For Digital Microfluidics, PhD Thesis, Duke University, 2001.
  18. Cho, S. K.; Moon, H.; Kim, C.-J. (2003). "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits". Journal of Microelectromechanical Systems. 12 (1). Institute of Electrical and Electronics Engineers (IEEE): 70–80. doi:10.1109/jmems.2002.807467. ISSN   1057-7157.
  19. Chang, H. C.; Yeo, L. (2009). Electrokinetically Driven Microfluidics and Nanofluidics. Cambridge University Press.
  20. Kirby, B. J. (2010). Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press. ISBN   978-0-521-11903-0. Archived from the original on 2019-04-28. Retrieved 2011-01-08.
  21. Klarman, Dan; Andelman, David; Urbakh, Michael (2011-05-17). "A Model of Electrowetting, Reversed Electrowetting, and Contact Angle Saturation". Langmuir. 27 (10): 6031–6041. arXiv: 1102.0791 . Bibcode:2011arXiv1102.0791K. doi:10.1021/la2004326. ISSN   0743-7463. PMID   21510663. S2CID   18448044.
  22. Chevalliot, Stéphanie; Kuiper, Stein; Heikenfeld, Jason (2012). "Experimental Validation of the Invariance of Electrowetting Contact Angle Saturation" (PDF). Journal of Adhesion Science and Technology. 26 (12–17). Brill: 1–22. doi:10.1163/156856111x599580. ISSN   0169-4243. S2CID   1760297. Archived from the original (PDF) on 2012-07-14.
  23. Krupenkin, Tom; Taylor, J. Ashley (2011-08-23). "Reverse electrowetting as a new approach to high-power energy harvesting". Nature Communications. 2 (1). Springer Science and Business Media LLC: 448. Bibcode:2011NatCo...2..448K. doi: 10.1038/ncomms1454 . ISSN   2041-1723. PMC   3265368 . PMID   21863015.
  24. Hao, Chonglei; Liu, Yahua; Chen, Xuemei; He, Yuncheng; Li, Qiusheng; Li, K. Y.; Wang, Zuankai (2014-10-30). "Electrowetting on liquid-infused film (EWOLF): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging". Scientific Reports. 4 (1). Springer Science and Business Media LLC: 6846. arXiv: 1409.6989 . Bibcode:2014NatSR...4E6846H. doi: 10.1038/srep06846 . ISSN   2045-2322. PMC   4213809 . PMID   25355005.
  25. Chiou, Pei Yu; Moon, Hyejin; Toshiyoshi, Hiroshi; Kim, Chang-Jin; Wu, Ming C. (2003). "Light actuation of liquid by optoelectrowetting". Sensors and Actuators A: Physical. 104 (3). Elsevier BV: 222–228. doi:10.1016/s0924-4247(03)00024-4. ISSN   0924-4247.
  26. Park, Sung-Yong; Teitell, Michael A.; Chiou, Eric P. Y. (2010). "Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns". Lab on a Chip. 10 (13). Royal Society of Chemistry (RSC): 1655–61. doi:10.1039/c001324b. ISSN   1473-0197. PMID   20448870.
  27. Arscott, Steve (2011). "Moving liquids with light: Photoelectrowetting on semiconductors". Scientific Reports. 1 (1): 184. arXiv: 1108.4935 . Bibcode:2011NatSR...1E.184A. doi: 10.1038/srep00184 . ISSN   2045-2322. PMC   3240946 . PMID   22355699.
  28. Yang, Chun-Guang; Xu, Zhang-Run; Wang, Jian-Hua (February 2010). "Manipulation of droplets in microfluidic systems". TrAC Trends in Analytical Chemistry. 29 (2): 141–157. doi:10.1016/j.trac.2009.11.002.
  29. Brabcova, Zuzana; McHale, Glen; Wells, Gary G.; Brown, Carl V.; Newton, Michael I. (20 March 2017). "Electric field induced reversible spreading of droplets into films on lubricant impregnated surfaces". Applied Physics Letters. 110 (12): 121603. Bibcode:2017ApPhL.110l1603B. doi: 10.1063/1.4978859 .
  30. 1 2 Lu, Yi; Sur, Aritra; Pascente, Carmen; Ravi Annapragada, S.; Ruchhoeft, Paul; Liu, Dong (March 2017). "Dynamics of droplet motion induced by Electrowetting". International Journal of Heat and Mass Transfer. 106: 920–931. doi: 10.1016/j.ijheatmasstransfer.2016.10.040 .
  31. "Varioptic - the Liquid Lens Company | Liquid Lens Technology". Archived from the original on 2011-03-05.
  32. H.Burak Eral, D.Mampallil, M. H. G. Duits, F. Mugele "Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting", Soft Matter, 2011, 7, 4954–4958, doi : 10.1039/C1SM05183K
  33. H. Burak Eral, R. Ruiter, J. Ruiter, J. M. Oh, C. Semprebon, M. Brinkmann, F. Mugele, "Reversible morphological transitions of a drop on a fiber", Soft Matter, 2011, 7 (11), 5138 – 5143, doi : 10.1039/C0SM01403F
  34. International Electrowetting Conference 2018