Bilinear map

Last updated

In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example.

Contents

Definition

Vector spaces

Let and be three vector spaces over the same base field . A bilinear map is a function

such that for all , the map

is a linear map from to and for all , the map

is a linear map from to In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed.

Such a map satisfies the following properties.

If and we have B(v, w) = B(w, v) for all then we say that B is symmetric . If X is the base field F, then the map is called a bilinear form , which are well-studied (for example: scalar product, inner product, and quadratic form).

Modules

The definition works without any changes if instead of vector spaces over a field F, we use modules over a commutative ring R. It generalizes to n-ary functions, where the proper term is multilinear .

For non-commutative rings R and S, a left R-module M and a right S-module N, a bilinear map is a map B : M × NT with T an (R, S)-bimodule, and for which any n in N, mB(m, n) is an R-module homomorphism, and for any m in M, nB(m, n) is an S-module homomorphism. This satisfies

B(rm, n) = rB(m, n)
B(m, ns) = B(m, n) ⋅ s

for all m in M, n in N, r in R and s in S, as well as B being additive in each argument.

Properties

An immediate consequence of the definition is that B(v, w) = 0X whenever v = 0V or w = 0W. This may be seen by writing the zero vector 0V as 0 ⋅ 0V (and similarly for 0W) and moving the scalar 0 "outside", in front of B, by linearity.

The set L(V, W; X) of all bilinear maps is a linear subspace of the space (viz. vector space, module) of all maps from V × W into X.

If V, W, X are finite-dimensional, then so is L(V, W; X). For that is, bilinear forms, the dimension of this space is dim V × dim W (while the space L(V × W; F) of linear forms is of dimension dim V + dim W). To see this, choose a basis for V and W; then each bilinear map can be uniquely represented by the matrix B(ei, fj), and vice versa. Now, if X is a space of higher dimension, we obviously have dim L(V, W; X) = dim V × dim W × dim X.

Examples

Continuity and separate continuity

Suppose and are topological vector spaces and let be a bilinear map. Then b is said to be separately continuous if the following two conditions hold:

  1. for all the map given by is continuous;
  2. for all the map given by is continuous.

Many separately continuous bilinear that are not continuous satisfy an additional property: hypocontinuity. [1] All continuous bilinear maps are hypocontinuous.

Sufficient conditions for continuity

Many bilinear maps that occur in practice are separately continuous but not all are continuous. We list here sufficient conditions for a separately continuous bilinear map to be continuous.

Composition map

Let be locally convex Hausdorff spaces and let be the composition map defined by In general, the bilinear map is not continuous (no matter what topologies the spaces of linear maps are given). We do, however, have the following results:

Give all three spaces of linear maps one of the following topologies:

  1. give all three the topology of bounded convergence;
  2. give all three the topology of compact convergence;
  3. give all three the topology of pointwise convergence.

See also

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.

In mathematics, and more specifically in linear algebra, a linear map is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.

In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted

In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In mathematics, a linear form is a linear map from a vector space to its field of scalars.

In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function space.

In mathematics, a bilinear form is a bilinear map V × VK on a vector space V over a field K. In other words, a bilinear form is a function B : V × VK that is linear in each argument separately:

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace W of a vector space V equipped with a bilinear form B is the set W of all vectors in V that are orthogonal to every vector in W. Informally, it is called the perp, short for perpendicular complement. It is a subspace of V.

In linear algebra, the transpose of a linear map between two vector spaces, defined over the same field, is an induced map between the dual spaces of the two vector spaces. The transpose or algebraic adjoint of a linear map is often used to study the original linear map. This concept is generalised by adjoint functors.

In mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves.

In functional analysis, an area of mathematics, the projective tensor product of two locally convex topological vector spaces is a natural topological vector space structure on their tensor product. Namely, given locally convex topological vector spaces and , the projective topology, or π-topology, on is the strongest topology which makes a locally convex topological vector space such that the canonical map is continuous. When equipped with this topology, is denoted and called the projective tensor product of and .

In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the completed injective tensor products. Injective tensor products have applications outside of nuclear spaces. In particular, as described below, up to TVS-isomorphism, many TVSs that are defined for real or complex valued functions, for instance, the Schwartz space or the space of continuously differentiable functions, can be immediately extended to functions valued in a Hausdorff locally convex TVS without any need to extend definitions from real/complex-valued functions to -valued functions.

In mathematics, nuclear operators are an important class of linear operators introduced by Alexander Grothendieck in his doctoral dissertation. Nuclear operators are intimately tied to the projective tensor product of two topological vector spaces (TVSs).

The finest locally convex topological vector space (TVS) topology on the tensor product of two locally convex TVSs, making the canonical map separately continuous is called the inductive topology or the -topology. When is endowed with this topology then it is denoted by and called the inductive tensor product of and

In mathematics, a dual system, dual pair, or duality over a field is a triple consisting of two vector spaces and over and a non-degenerate bilinear map .

In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.

References

    Bibliography