In abstract algebra, a bimodule is an abelian group that is both a left and a right module, such that the left and right multiplications are compatible. Besides appearing naturally in many parts of mathematics, bimodules play a clarifying role, in the sense that many of the relationships between left and right modules become simpler when they are expressed in terms of bimodules.
If R and S are two rings, then an R-S-bimodule is an abelian group (M, +) such that:
An R-R-bimodule is also known as an R-bimodule.
If M and N are R-S-bimodules, then a map f : M → N is a bimodule homomorphism if it is both a homomorphism of left R-modules and of right S-modules.
An R-S-bimodule is actually the same thing as a left module over the ring R ⊗ZSop, where Sop is the opposite ring of S (where the multiplication is defined with the arguments exchanged). Bimodule homomorphisms are the same as homomorphisms of left R ⊗ZSop modules. Using these facts, many definitions and statements about modules can be immediately translated into definitions and statements about bimodules. For example, the category of all R-S-bimodules is abelian, and the standard isomorphism theorems are valid for bimodules.
There are however some new effects in the world of bimodules, especially when it comes to the tensor product: if M is an R-S-bimodule and N is an S-T-bimodule, then the tensor product of M and N (taken over the ring S) is an R-T-bimodule in a natural fashion. This tensor product of bimodules is associative (up to a unique canonical isomorphism), and one can hence construct a category whose objects are the rings and whose morphisms are the bimodules. This is in fact a 2-category, in a canonical way – 2 morphisms between R-S-bimodulesM and N are exactly bimodule homomorphisms, i.e. functions
that satisfy
for m ∈ M, r ∈ R, and s ∈ S. One immediately verifies the interchange law for bimodule homomorphisms, i.e.
holds whenever either (and hence the other) side of the equation is defined, and where ∘ is the usual composition of homomorphisms. In this interpretation, the category End(R) = Bimod(R, R) is exactly the monoidal category of R-R-bimodules with the usual tensor product over R the tensor product of the category. In particular, if R is a commutative ring, every left or right R-module is canonically an R-R-bimodule, which gives a monoidal embedding of the category R-Mod into Bimod(R, R). The case that R is a field K is a motivating example of a symmetric monoidal category, in which case R-Mod = K-Vect, the category of vector spaces over K, with the usual tensor product ⊗ = ⊗K giving the monoidal structure, and with unit K. We also see that a monoid in Bimod(R, R) is exactly an R-algebra.[ clarification needed ] [1] Furthermore, if M is an R-S-bimodule and L is an T-S-bimodule, then the set HomS(M, L) of all S-module homomorphisms from M to L becomes a T-R-bimodule in a natural fashion. These statements extend to the derived functors Ext and Tor.
Profunctors can be seen as a categorical generalization of bimodules.
Note that bimodules are not at all related to bialgebras.
In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.
In mathematics, a product is the result of multiplication, or an expression that identifies objects to be multiplied, called factors. For example, 21 is the product of 3 and 7, and is the product of and . When one factor is an integer, the product is called a multiple.
In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted .
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
In mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.
In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels.
Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module also generalizes the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers.
In mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Much of the work in homological algebra is designed to cope with functors that fail to be exact, but in ways that can still be controlled.
In algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R,
In mathematics, the symmetric algebraS(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism g : S(V) → A such that f = g ∘ i, where i is the inclusion map of V in S(V).
In mathematics, especially in category theory, a closed monoidal category is a category that is both a monoidal category and a closed category in such a way that the structures are compatible.
In mathematics, especially in the fields of representation theory and module theory, a Frobenius algebra is a finite-dimensional unital associative algebra with a special kind of bilinear form which gives the algebras particularly nice duality theories. Frobenius algebras began to be studied in the 1930s by Richard Brauer and Cecil Nesbitt and were named after Georg Frobenius. Tadashi Nakayama discovered the beginnings of a rich duality theory, . Jean Dieudonné used this to characterize Frobenius algebras. Frobenius algebras were generalized to quasi-Frobenius rings, those Noetherian rings whose right regular representation is injective. In recent times, interest has been renewed in Frobenius algebras due to connections to topological quantum field theory.
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. As an example, the direct sum of two abelian groups and is another abelian group consisting of the ordered pairs where and . To add ordered pairs, we define the sum to be ; in other words addition is defined coordinate-wise. For example, the direct sum , where is real coordinate space, is the Cartesian plane, . A similar process can be used to form the direct sum of two vector spaces or two modules.
In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the module in a universal way.
In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. More precisely two rings like R, S are Morita equivalent if their categories of modules are additively equivalent. It is named after Japanese mathematician Kiiti Morita who defined equivalence and a similar notion of duality in 1958.
In mathematics, the tensor-hom adjunction is that the tensor product and hom-functor form an adjoint pair:
In category theory, a branch of mathematics, the center is a variant of the notion of the center of a monoid, group, or ring to a category.
In ring theory and Frobenius algebra extensions, areas of mathematics, there is a notion of depth two subring or depth of a Frobenius extension. The notion of depth two is important in a certain noncommutative Galois theory, which generates Hopf algebroids in place of the more classical Galois groups, whereas the notion of depth greater than two measures the defect, or distance, from being depth two in a tower of iterated endomorphism rings above the subring. A more recent definition of depth of any unital subring in any associative ring is proposed in a paper studying the depth of a subgroup of a finite group as group algebras over a commutative ring.
In algebra, a change of rings is an operation of changing a coefficient ring to another.