Tor functor

Last updated

In mathematics, the Tor functors are the derived functors of the tensor product of modules over a ring. Along with the Ext functor, Tor is one of the central concepts of homological algebra, in which ideas from algebraic topology are used to construct invariants of algebraic structures. The homology of groups, Lie algebras, and associative algebras can all be defined in terms of Tor. The name comes from a relation between the first Tor group Tor1 and the torsion subgroup of an abelian group.

Contents

In the special case of abelian groups, Tor was introduced by Eduard Čech (1935) and named by Samuel Eilenberg around 1950. [1] It was first applied to the Künneth theorem and universal coefficient theorem in topology. For modules over any ring, Tor was defined by Henri Cartan and Eilenberg in their 1956 book Homological Algebra. [2]

Definition

Let R be a ring. Write R-Mod for the category of left R-modules and Mod-R for the category of right R-modules. (If R is commutative, the two categories can be identified.) For a fixed left R-module B, let for A in Mod-R. This is a right exact functor from Mod-R to the category of abelian groups Ab, and so it has left derived functors . The Tor groups are the abelian groups defined by

for an integer i. By definition, this means: take any projective resolution

and remove A, and form the chain complex:

For each integer i, the group is the homology of this complex at position i. It is zero for i negative. Moreover, is the cokernel of the map , which is isomorphic to .

Alternatively, one can define Tor by fixing A and taking the left derived functors of the right exact functor G(B) = ARB. That is, tensor A with a projective resolution of B and take homology. Cartan and Eilenberg showed that these constructions are independent of the choice of projective resolution, and that both constructions yield the same Tor groups. [3] Moreover, for a fixed ring R, Tor is a functor in each variable (from R-modules to abelian groups).

For a commutative ring R and R-modules A and B, TorR
i
(A, B) is an R-module (using that ARB is an R-module in this case). For a non-commutative ring R, TorR
i
(A, B) is only an abelian group, in general. If R is an algebra over a ring S (which means in particular that S is commutative), then TorR
i
(A, B) is at least an S-module.

Properties

Here are some of the basic properties and computations of Tor groups. [4]

Important special cases

See also

Notes

  1. Weibel (1999).
  2. Cartan & Eilenberg (1956), section VI.1.
  3. Weibel (1994), section 2.4 and Theorem 2.7.2.
  4. Weibel (1994), Chapters 2 and 3.
  5. Weibel (1994), Lemma 3.2.8.
  6. Weibel (1994), Definition 2.1.1.
  7. Weibel (1994), Remark in section 3.1.
  8. Weibel (1994), section 4.5.
  9. Weibel (1994), Corollary 2.6.17.
  10. Weibel (1994), Corollary 3.2.10.
  11. Avramov & Halperin (1986), section 2.16; Stacks Project, Tag 09PQ .
  12. Avramov & Halperin (1986), section 4.7.
  13. Gulliksen & Levin (1969), Theorem 2.3.5; Sjödin (1980), Theorem 1.
  14. Quillen (1970), section 7.

Related Research Articles

<span class="mw-page-title-main">Associative algebra</span> Algebraic structure with (a + b)(c + d) = ac + ad + bc + bd and (a)(bc) = (ab)(c)

In mathematics, an associative algebraA is an algebraic structure with compatible operations of addition, multiplication, and a scalar multiplication by elements in some field K. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over the field K. A standard first example of a K-algebra is a ring of square matrices over a field K, with the usual matrix multiplication.

<span class="mw-page-title-main">Homological algebra</span> Branch of mathematics

Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.

In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions.

In mathematics, certain functors may be derived to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics.

In mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Much of the work in homological algebra is designed to cope with functors that fail to be exact, but in ways that can still be controlled.

In algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R,

In algebra, a flat module over a ring R is an R-module M such that taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact.

In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another.

In mathematics, especially in homological algebra and algebraic topology, a Künneth theorem, also called a Künneth formula, is a statement relating the homology of two objects to the homology of their product. The classical statement of the Künneth theorem relates the singular homology of two topological spaces X and Y and their product space . In the simplest possible case the relationship is that of a tensor product, but for applications it is very often necessary to apply certain tools of homological algebra to express the answer.

In algebraic topology, universal coefficient theorems establish relationships between homology groups (or cohomology groups) with different coefficients. For instance, for every topological space X, its integral homology groups:

In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the module in a universal way.

In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring. The torsion submodule of a module is the submodule formed by the torsion elements. A torsion module is a module that equals its torsion submodule. A module is torsion-free if its torsion submodule comprises only the zero element.

In mathematics, Hochschild homology (and cohomology) is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by Gerhard Hochschild (1945) for algebras over a field, and extended to algebras over more general rings by Henri Cartan and Samuel Eilenberg (1956).

In mathematics, the cotangent complex is a common generalisation of the cotangent sheaf, normal bundle and virtual tangent bundle of a map of geometric spaces such as manifolds or schemes. If is a morphism of geometric or algebraic objects, the corresponding cotangent complex can be thought of as a universal "linearization" of it, which serves to control the deformation theory of . It is constructed as an object in a certain derived category of sheaves on using the methods of homotopical algebra.

In mathematics, especially in the areas of abstract algebra dealing with group cohomology or relative homological algebra, Shapiro's lemma, also known as the Eckmann–Shapiro lemma, relates extensions of modules over one ring to extensions over another, especially the group ring of a group and of a subgroup. It thus relates the group cohomology with respect to a group to the cohomology with respect to a subgroup. Shapiro's lemma is named after Arnold S. Shapiro, who proved it in 1961; however, Beno Eckmann had discovered it earlier, in 1953.

In commutative algebra, André–Quillen cohomology is a theory of cohomology for commutative rings which is closely related to the cotangent complex. The first three cohomology groups were introduced by Stephen Lichtenbaum and Michael Schlessinger (1967) and are sometimes called Lichtenbaum–Schlessinger functorsT0, T1, T2, and the higher groups were defined independently by Michel André (1974) and Daniel Quillen (1970) using methods of homotopy theory. It comes with a parallel homology theory called André–Quillen homology.

In algebra, given a category C with a cotriple, then-th cotriple homology of an object X in C with coefficients in a functor E is the n-th homotopy group of the E of the augmented simplicial object induced from X by the cotriple. The term "homology" is because in the abelian case, by the Dold–Kan correspondence, the homotopy groups are the homology of the corresponding chain complex.

References