Tensor product of modules

Last updated

In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (e.g. multiplication) to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the module in a universal way.

Contents

Balanced product

For a ring R, a right R-module M, a left R-module N, and an abelian group G, a map φ: M × NG is said to be R-balanced, R-middle-linear or an R-balanced product if for all m, m′ in M, n, n′ in N, and r in R the following hold: [1] :126

The set of all such balanced products over R from M × N to G is denoted by LR(M, N; G).

If φ, ψ are balanced products, then each of the operations φ + ψ and −φ defined pointwise is a balanced product. This turns the set LR(M, N; G) into an abelian group.

For M and N fixed, the map G ↦ LR(M, N; G) is a functor from the category of abelian groups to itself. The morphism part is given by mapping a group homomorphism g : GG to the function φgφ, which goes from LR(M, N; G) to LR(M, N; G′).

Remarks
  1. Properties (Dl) and (Dr) express biadditivity of φ, which may be regarded as distributivity of φ over addition.
  2. Property (A) resembles some associative property of φ.
  3. Every ring R is an R-bimodule. So the ring multiplication (r, r′) ↦ rr in R is an R-balanced product R × RR.

Definition

For a ring R, a right R-module M, a left R-module N, the tensor product over R

is an abelian group together with a balanced product (as defined above)

which is universal in the following sense: [2]

Tensor product of modules2.svg
For every abelian group G and every balanced product
there is a unique group homomorphism
such that

As with all universal properties, the above property defines the tensor product uniquely up to a unique isomorphism: any other abelian group and balanced product with the same properties will be isomorphic to MRN and ⊗. Indeed, the mapping ⊗ is called canonical, or more explicitly: the canonical mapping (or balanced product) of the tensor product. [3]

The definition does not prove the existence of MRN; see below for a construction.

The tensor product can also be defined as a representing object for the functor G → LR(M,N;G); explicitly, this means there is a natural isomorphism:

This is a succinct way of stating the universal mapping property given above. (If a priori one is given this natural isomorphism, then can be recovered by taking and then mapping the identity map.)

Similarly, given the natural identification , [4] one can also define MRN by the formula

This is known as the tensor-hom adjunction; see also § Properties.

For each x in M, y in N, one writes

xy

for the image of (x, y) under the canonical map . It is often called a pure tensor. Strictly speaking, the correct notation would be xRy but it is conventional to drop R here. Then, immediately from the definition, there are relations:

x ⊗ (y + y′) = xy + xy(Dl)
(x + x′) ⊗ y = xy + x′ ⊗ y(Dr)
(xr) ⊗ y = x ⊗ (ry)(A)

The universal property of a tensor product has the following important consequence:

Proposition  Every element of can be written, non-uniquely, as

In other words, the image of generates . Furthermore, if f is a function defined on elements with values in an abelian group G, then f extends uniquely to the homomorphism defined on the whole if and only if is -bilinear in x and y.

Proof: For the first statement, let L be the subgroup of generated by elements of the form in question, and q the quotient map to Q. We have: as well as . Hence, by the uniqueness part of the universal property, q = 0. The second statement is because to define a module homomorphism, it is enough to define it on the generating set of the module.

Application of the universal property of tensor products

Determining whether a tensor product of modules is zero

In practice, it is sometimes more difficult to show that a tensor product of R-modules is nonzero than it is to show that it is 0. The universal property gives a convenient way for checking this.

To check that a tensor product is nonzero, one can construct an R-bilinear map to an abelian group such that . This works because if , then .

For example, to see that , is nonzero, take to be and . This says that the pure tensors as long as is nonzero in .

For equivalent modules

The proposition says that one can work with explicit elements of the tensor products instead of invoking the universal property directly each time. This is very convenient in practice. For example, if R is commutative and the left and right actions by R on modules are considered to be equivalent, then can naturally be furnished with the R-scalar multiplication by extending

to the whole by the previous proposition (strictly speaking, what is needed is a bimodule structure not commutativity; see a paragraph below). Equipped with this R-module structure, satisfies a universal property similar to the above: for any R-module G, there is a natural isomorphism:

If R is not necessarily commutative but if M has a left action by a ring S (for example, R), then can be given the left S-module structure, like above, by the formula

Analogously, if N has a right action by a ring S, then becomes a right S-module.

Tensor product of linear maps and a change of base ring

Given linear maps of right modules over a ring R and of left modules, there is a unique group homomorphism

The construction has a consequence that tensoring is a functor: each right R-module M determines the functor

from the category of left modules to the category of abelian groups that sends N to MN and a module homomorphism f to the group homomorphism 1 ⊗ f.

If is a ring homomorphism and if M is a right S-module and N a left S-module, then there is the canonical surjective homomorphism:

induced by [5]

The resulting map is surjective since pure tensors xy generate the whole module. In particular, taking R to be this shows every tensor product of modules is a quotient of a tensor product of abelian groups.

Several modules

(This section need to be updated. For now, see § Properties for the more general discussion.)

It is possible to extend the definition to a tensor product of any number of modules over the same commutative ring. For example, the universal property of

M1M2M3

is that each trilinear map on

M1 × M2 × M3Z

corresponds to a unique linear map

M1M2M3Z.

The binary tensor product is associative: (M1M2) ⊗ M3 is naturally isomorphic to M1 ⊗ (M2M3). The tensor product of three modules defined by the universal property of trilinear maps is isomorphic to both of these iterated tensor products.

Properties

Modules over general rings

Let R1, R2, R3, R be rings, not necessarily commutative.

Modules over commutative rings

Let R be a commutative ring, and M, N and P be R-modules. Then

Identity
Associativity
The first three properties (plus identities on morphisms) say that the category of R-modules, with R commutative, forms a symmetric monoidal category. Thus is well-defined.
Symmetry
In fact, for any permutation σ of the set {1, ..., n}, there is a unique isomorphism:
Distribution over direct sums
In fact,
for an index set I of arbitrary cardinality. Since finite products coincide with finite direct sums, this imples:
Base extension
If S is an R-algebra, writing ,
[7] cf. § Extension of scalars. A corollary is:
Commutation with direct limits
For any direct system of R-modules Mi,
Adjunction
A corollary is:
Tensor-hom relation
There is a canonical R-linear map:
which is an isomorphism if either M or P is a finitely generated projective module (see § As linearity-preserving maps for the non-commutative case); [8] more generally, there is a canonical R-linear map:
which is an isomorphism if either or is a pair of finitely generated projective modules.

To give a practical example, suppose M, N are free modules with bases and . Then M is the direct sum and the same for N. By the distributive property, one has:

i.e., are the R-basis of . Even if M is not free, a free presentation of M can be used to compute tensor products.

The tensor product, in general, does not commute with inverse limit: on the one hand,

(cf. "examples"). On the other hand,

where are the ring of p-adic integers and the field of p-adic numbers. See also "profinite integer" for an example in the similar spirit.

If R is not commutative, the order of tensor products could matter in the following way: we "use up" the right action of M and the left action of N to form the tensor product ; in particular, would not even be defined. If M, N are bi-modules, then has the left action coming from the left action of M and the right action coming from the right action of N; those actions need not be the same as the left and right actions of .

The associativity holds more generally for non-commutative rings: if M is a right R-module, N a (R, S)-module and P a left S-module, then

as abelian group.

The general form of adjoint relation of tensor products says: if R is not necessarily commutative, M is a right R-module, N is a (R, S)-module, P is a right S-module, then as abelian group [9]

where is given by .

Tensor product of an R-module with the fraction field

Let R be an integral domain with fraction field K.

Extension of scalars

The adjoint relation in the general form has an important special case: for any R-algebra S, M a right R-module, P a right S-module, using , we have the natural isomorphism:

This says that the functor is a left adjoint to the forgetful functor , which restricts an S-action to an R-action. Because of this, is often called the extension of scalars from R to S. In the representation theory, when R, S are group algebras, the above relation becomes the Frobenius reciprocity.

Examples

  • , for any R-algebra S (i.e., a free module remains free after extending scalars.)
  • For a commutative ring and a commutative R-algebra S, we have:
    in fact, more generally,
    where is an ideal.
  • Using , the previous example and the Chinese remainder theorem, we have as rings
    This gives an example when a tensor product is a direct product.
  • .

Examples

The structure of a tensor product of quite ordinary modules may be unpredictable.

Let G be an abelian group in which every element has finite order (that is G is a torsion abelian group; for example G can be a finite abelian group or ). Then: [10]

Indeed, any is of the form

If is the order of , then we compute:

Similarly, one sees

Here are some identities useful for calculation: Let R be a commutative ring, I, J ideals, M, NR-modules. Then

  1. . If M is flat, . [proof 1]
  2. (because tensoring commutes with base extensions)
  3. . [proof 2]

Example: If G is an abelian group, ; this follows from 1.

Example:; this follows from 3. In particular, for distinct prime numbers p, q,

Tensor products can be applied to control the order of elements of groups. Let G be an abelian group. Then the multiples of 2 in

are zero.

Example: Let be the group of n-th roots of unity. It is a cyclic group and cyclic groups are classified by orders. Thus, non-canonically, and thus, when g is the gcd of n and m,

Example: Consider . Since is obtained from by imposing -linearity on the middle, we have the surjection

whose kernel is generated by elements of the form where r, s, x, u are integers and s is nonzero. Since

the kernel actually vanishes; hence, .

However, consider and . As -vector space, has dimension 4, but has dimension 2.

Thus, and are not isomorphic.

Example: We propose to compare and . Like in the previous example, we have: as abelian group and thus as -vector space (any -linear map between -vector spaces is -linear). As -vector space, has dimension (cardinality of a basis) of continuum. Hence, has a -basis indexed by a product of continuums; thus its -dimension is continuum. Hence, for dimension reason, there is a non-canonical isomorphism of -vector spaces:

Consider the modules for irreducible polynomials such that . Then,

Another useful family of examples comes from changing the scalars. Notice that

Good examples of this phenomenon to look at are when .

Construction

The construction of MN takes a quotient of a free abelian group with basis the symbols mn, used here to denote the ordered pair (m, n), for m in M and n in N by the subgroup generated by all elements of the form

  1. m ∗ (n + n′) + mn + mn
  2. −(m + m′) ∗ n + mn + m′ ∗ n
  3. (m · r) ∗ nm ∗ (r · n)

where m, m′ in M, n, n′ in N, and r in R. The quotient map which takes mn = (m, n) to the coset containing mn; that is,

is balanced, and the subgroup has been chosen minimally so that this map is balanced. The universal property of ⊗ follows from the universal properties of a free abelian group and a quotient.

If S is a subring of a ring R, then is the quotient group of by the subgroup generated by , where is the image of under . In particular, any tensor product of R-modules can be constructed, if so desired, as a quotient of a tensor product of abelian groups by imposing the R-balanced product property.

More category-theoretically, let σ be the given right action of R on M; i.e., σ(m, r) = m · r and τ the left action of R of N. Then, provided the tensor product of abelian groups is already defined, the tensor product of M and N over R can be defined as the coequalizer:

where without a subscript refers to the tensor product of abelian groups.

In the construction of the tensor product over a commutative ring R, the R-module structure can be built in from the start by forming the quotient of a free R-module by the submodule generated by the elements given above for the general construction, augmented by the elements r ⋅ (mn) − m ∗ (rn). Alternately, the general construction can be given a Z(R)-module structure by defining the scalar action by r ⋅ (mn) = m ⊗ (rn) when this is well-defined, which is precisely when r ∈ Z(R), the centre of R.

The direct product of M and N is rarely isomorphic to the tensor product of M and N. When R is not commutative, then the tensor product requires that M and N be modules on opposite sides, while the direct product requires they be modules on the same side. In all cases the only function from M × N to G that is both linear and bilinear is the zero map.

As linear maps

In the general case, not all the properties of a tensor product of vector spaces extend to modules. Yet, some useful properties of the tensor product, considered as module homomorphisms, remain.

Dual module

The dual module of a right R-module E, is defined as HomR(E, R) with the canonical left R-module structure, and is denoted E. [11] The canonical structure is the pointwise operations of addition and scalar multiplication. Thus, E is the set of all R-linear maps ER (also called linear forms), with operations

The dual of a left R-module is defined analogously, with the same notation.

There is always a canonical homomorphism EE∗∗ from E to its second dual. It is an isomorphism if E is a free module of finite rank. In general, E is called a reflexive module if the canonical homomorphism is an isomorphism.

Duality pairing

We denote the natural pairing of its dual E and a right R-module E, or of a left R-module F and its dual F as

The pairing is left R-linear in its left argument, and right R-linear in its right argument:

An element as a (bi)linear map

In the general case, each element of the tensor product of modules gives rise to a left R-linear map, to a right R-linear map, and to an R-bilinear form. Unlike the commutative case, in the general case the tensor product is not an R-module, and thus does not support scalar multiplication.

Both cases hold for general modules, and become isomorphisms if the modules E and F are restricted to being finitely generated projective modules (in particular free modules of finite ranks). Thus, an element of a tensor product of modules over a ring R maps canonically onto an R-linear map, though as with vector spaces, constraints apply to the modules for this to be equivalent to the full space of such linear maps.

Trace

Let R be a commutative ring and E an R-module. Then there is a canonical R-linear map:

induced through linearity by ; it is the unique R-linear map corresponding to the natural pairing.

If E is a finitely generated projective R-module, then one can identify through the canonical homomorphism mentioned above and then the above is the trace map:

When R is a field, this is the usual trace of a linear transformation.

Example from differential geometry: tensor field

The most prominent example of a tensor product of modules in differential geometry is the tensor product of the spaces of vector fields and differential forms. More precisely, if R is the (commutative) ring of smooth functions on a smooth manifold M, then one puts

where Γ means the space of sections and the superscript means tensoring p times over R. By definition, an element of is a tensor field of type (p, q).

As R-modules, is the dual module of . [14]

To lighten the notation, put and so . [15] When p, q ≥ 1, for each (k, l) with 1 ≤ kp, 1 ≤ lq, there is an R-multilinear map:

where means and the hat means a term is omitted. By the universal property, it corresponds to a unique R-linear map:

It is called the contraction of tensors in the index (k, l). Unwinding what the universal property says one sees:

Remark: The preceding discussion is standard in textbooks on differential geometry (e.g., Helgason). In a way, the sheaf-theoretic construction (i.e., the language of sheaf of modules) is more natural and increasingly more common; for that, see the section § Tensor product of sheaves of modules.

Relationship to flat modules

In general,

is a bifunctor which accepts a right and a left R module pair as input, and assigns them to the tensor product in the category of abelian groups.

By fixing a right R module M, a functor

arises, and symmetrically a left R module N could be fixed to create a functor

Unlike the Hom bifunctor the tensor functor is covariant in both inputs.

It can be shown that and are always right exact functors, but not necessarily left exact (, where the first map is multiplication by , is exact but not after taking the tensor with ). By definition, a module T is a flat module if is an exact functor.

If and are generating sets for M and N, respectively, then will be a generating set for Because the tensor functor sometimes fails to be left exact, this may not be a minimal generating set, even if the original generating sets are minimal. If M is a flat module, the functor is exact by the very definition of a flat module. If the tensor products are taken over a field F, we are in the case of vector spaces as above. Since all F modules are flat, the bifunctor is exact in both positions, and the two given generating sets are bases, then indeed forms a basis for .

Additional structure

If S and T are commutative R-algebras, then, similar to #For equivalent modules, SRT will be a commutative R-algebra as well, with the multiplication map defined by (m1m2) (n1n2) = (m1n1m2n2) and extended by linearity. In this setting, the tensor product become a fibered coproduct in the category of commutative R-algebras. (But it is not a coproduct in the category of R-algebras.)

If M and N are both R-modules over a commutative ring, then their tensor product is again an R-module. If R is a ring, RM is a left R-module, and the commutator

rssr

of any two elements r and s of R is in the annihilator of M, then we can make M into a right R module by setting

mr = rm.

The action of R on M factors through an action of a quotient commutative ring. In this case the tensor product of M with itself over R is again an R-module. This is a very common technique in commutative algebra.

Generalization

Tensor product of complexes of modules

If X, Y are complexes of R-modules (R a commutative ring), then their tensor product is the complex given by

with the differential given by: for x in Xi and y in Yj,

[16]

For example, if C is a chain complex of flat abelian groups and if G is an abelian group, then the homology group of is the homology group of C with coefficients in G (see also: universal coefficient theorem.)

Tensor product of sheaves of modules

The tensor product of sheaves of modules is the sheaf associated to the pre-sheaf of the tensor products of the modules of sections over open subsets.

In this setup, for example, one can define a tensor field on a smooth manifold M as a (global or local) section of the tensor product (called tensor bundle)

where O is the sheaf of rings of smooth functions on M and the bundles are viewed as locally free sheaves on M. [17]

The exterior bundle on M is the subbundle of the tensor bundle consisting of all antisymmetric covariant tensors. Sections of the exterior bundle are differential forms on M.

One important case when one forms a tensor product over a sheaf of non-commutative rings appears in theory of D-modules; that is, tensor products over the sheaf of differential operators.

See also

Notes

  1. Tensoring with M the exact sequence gives
    where f is given by . Since the image of f is IM, we get the first part of 1. If M is flat, f is injective and so is an isomorphism onto its image.
  2. Q.E.D.

Related Research Articles

In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.

In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted .

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.

In mathematics, the tensor product of two algebras over a commutative ring R is also an R-algebra. This gives the tensor product of algebras. When the ring is a field, the most common application of such products is to describe the product of algebra representations.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Much of the work in homological algebra is designed to cope with functors that fail to be exact, but in ways that can still be controlled.

In algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R,

In algebra, flat modules include free modules, projective modules, and, over a principal ideal domain, torsion free modules. Formally, a module M over a ring R is flat if taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another.

In mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.

In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968). All these concepts were further generalized to mixed Hodge modules over complex varieties by Morihiko Saito (1989).

In mathematics, Hochschild homology (and cohomology) is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by Gerhard Hochschild (1945) for algebras over a field, and extended to algebras over more general rings by Henri Cartan and Samuel Eilenberg (1956).

In mathematics, the tensor-hom adjunction is that the tensor product and hom-functor form an adjoint pair:

In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times the restriction of s for any f in O(U) and s in F(U).

In mathematics, derived noncommutative algebraic geometry, the derived version of noncommutative algebraic geometry, is the geometric study of derived categories and related constructions of triangulated categories using categorical tools. Some basic examples include the bounded derived category of coherent sheaves on a smooth variety, , called its derived category, or the derived category of perfect complexes on an algebraic variety, denoted . For instance, the derived category of coherent sheaves on a smooth projective variety can be used as an invariant of the underlying variety for many cases. Unfortunately, studying derived categories as geometric objects of themselves does not have a standardized name.

References

  1. Nathan Jacobson (2009), Basic Algebra II (2nd ed.), Dover Publications
  2. Hazewinkel, et al. (2004), p. 95, Prop. 4.5.1
  3. Bourbaki , ch. II §3.1
  4. First, if , then the claimed identification is given by with . In general, has the structure of a right R-module by . Thus, for any -bilinear map f, f′ is R-linear .
  5. Bourbaki , ch. II §3.2.
  6. Bourbaki , ch. II §3.8
  7. Proof: (using associativity in a general form)
  8. Bourbaki , ch. II §4.4
  9. Bourbaki , ch.II §4.1 Proposition 1
  10. Example 3.6 of http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/tensorprod.pdf
  11. Bourbaki , ch. II §2.3
  12. Bourbaki , ch. II §4.2 eq. (11)
  13. Bourbaki , ch. II §4.2 eq. (15)
  14. Helgason 1978 , Lemma 2.3'
  15. This is actually the definition of differential one-forms, global sections of , in Helgason, but is equivalent to the usual definition that does not use module theory.
  16. May 1999 , ch. 12 §3
  17. See also Encyclopedia of Mathematics – Tensor bundle