Pointwise

Last updated

In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value of some function An important class of pointwise concepts are the pointwise operations, that is, operations defined on functions by applying the operations to function values separately for each point in the domain of definition. Important relations can also be defined pointwise.

Contents

Pointwise operations

Pointwise sum (upper plot, violet) and product (green) of the functions sin (lower plot, blue) and ln (red). The highlighted vertical slice shows the computation at the point x=2p. Pointwise sum and product of sin and ln function.png
Pointwise sum (upper plot, violet) and product (green) of the functions sin (lower plot, blue) and ln (red). The highlighted vertical slice shows the computation at the point x=2π.

Formal definition

A binary operation o: Y × YY on a set Y can be lifted pointwise to an operation O: (XY) × (XY) → (XY) on the set XY of all functions from X to Y as follows: Given two functions f1: XY and f2: XY, define the function O(f1, f2): XY by

(O(f1, f2))(x) = o(f1(x), f2(x)) for all xX.

Commonly, o and O are denoted by the same symbol. A similar definition is used for unary operations o, and for operations of other arity.[ citation needed ]

Examples

where .

See also pointwise product, and scalar.

An example of an operation on functions which is not pointwise is convolution.

Properties

Pointwise operations inherit such properties as associativity, commutativity and distributivity from corresponding operations on the codomain. If is some algebraic structure, the set of all functions to the carrier set of can be turned into an algebraic structure of the same type in an analogous way.

Componentwise operations

Componentwise operations are usually defined on vectors, where vectors are elements of the set for some natural number and some field . If we denote the -th component of any vector as , then componentwise addition is .

Componentwise operations can be defined on matrices. Matrix addition, where is a componentwise operation while matrix multiplication is not.

A tuple can be regarded as a function, and a vector is a tuple. Therefore, any vector corresponds to the function such that , and any componentwise operation on vectors is the pointwise operation on functions corresponding to those vectors.

Pointwise relations

In order theory it is common to define a pointwise partial order on functions. With A, B posets, the set of functions AB can be ordered by fg if and only if (∀x ∈ A) f(x) ≤ g(x). Pointwise orders also inherit some properties of the underlying posets. For instance if A and B are continuous lattices, then so is the set of functions AB with pointwise order. [1] Using the pointwise order on functions one can concisely define other important notions, for instance: [2]

An example of an infinitary pointwise relation is pointwise convergence of functionsa sequence of functions

with

converges pointwise to a function if for each in

Notes

  1. Gierz et al., p. xxxiii
  2. Gierz, et al., p. 26

Related Research Articles

<span class="mw-page-title-main">Associative algebra</span> Ring that is also a vector space or a module

In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.

In mathematics, and more specifically in linear algebra, a linear map is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.

In mathematics, a product is the result of multiplication, or an expression that identifies objects to be multiplied, called factors. For example, 21 is the product of 3 and 7, and is the product of and . When one factor is an integer, the product is called a multiple.

<span class="mw-page-title-main">Vector space</span> Algebraic structure in linear algebra

In mathematics and physics, a vector space is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. Real vector space and complex vector space are kinds of vector spaces based on different kinds of scalars: real coordinate space or complex coordinate space.

In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a coproduct. Contrast with the direct product, which is the dual notion.

<span class="mw-page-title-main">Matrix multiplication</span> Mathematical operation in linear algebra

In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.

In mathematics, the dot product or scalar product is an algebraic operation that takes two equal-length sequences of numbers, and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used. It is often called the inner product of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space.

In order theory, a field of mathematics, an incidence algebra is an associative algebra, defined for every locally finite partially ordered set and commutative ring with unity. Subalgebras called reduced incidence algebras give a natural construction of various types of generating functions used in combinatorics and number theory.

In mathematics, an algebra over a field is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear".

In mathematics, a linear form is a linear map from a vector space to its field of scalars.

<span class="mw-page-title-main">Scalar multiplication</span> Algebraic operation

In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra. In common geometrical contexts, scalar multiplication of a real Euclidean vector by a positive real number multiplies the magnitude of the vector without changing its direction. Scalar multiplication is the multiplication of a vector by a scalar, and is to be distinguished from inner product of two vectors.

In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free-modules, the free modules over the integers. Lattice theory studies free abelian subgroups of real vector spaces. In algebraic topology, free abelian groups are used to define chain groups, and in algebraic geometry they are used to define divisors.

In mathematics and physics, a tensor field assigns a tensor to each point of a mathematical space. Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis of stress and strain in materials, and in numerous applications in the physical sciences. As a tensor is a generalization of a scalar and a vector, a tensor field is a generalization of a scalar field or vector field that assigns, respectively, a scalar or vector to each point of space. If a tensor A is defined on a vector fields set X(M) over a module M, we call A a tensor field on M.

<span class="mw-page-title-main">Module (mathematics)</span> Generalization of vector spaces from fields to rings

In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers.

In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function space.

<span class="mw-page-title-main">Reciprocal lattice</span> Fourier transform of a real-space lattice, important in solid-state physics

In physics, the reciprocal lattice emerges from the Fourier transform of another lattice. The direct lattice or real lattice is a periodic function in physical space, such as a crystal system. The reciprocal lattice exists in the mathematical space of spatial frequencies, known as reciprocal space or k space, where refers to the wavevector.

In mathematics, we can define norms for the elements of a vector space. When the vector space in question consists of matrices, these are called matrix norms.

In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context.

A vector-valued function, also referred to as a vector function, is a mathematical function of one or more variables whose range is a set of multidimensional vectors or infinite-dimensional vectors. The input of a vector-valued function could be a scalar or a vector ; the dimension of the function's domain has no relation to the dimension of its range.

In mathematics, the pointwise product of two functions is another function, obtained by multiplying the images of the two functions at each value in the domain. If f and g are both functions with domain X and codomain Y, and elements of Y can be multiplied (for instance, Y could be some set of numbers), then the pointwise product of f and g is another function from X to Y which maps x in X to f (x)g(x) in Y.

References

For order theory examples:

This article incorporates material from Pointwise on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.