In mathematics, pointwise convergence is one of various senses in which a sequence of functions can converge to a particular function. It is weaker than uniform convergence, to which it is often compared. [1] [2]
Suppose that is a set and is a topological space, such as the real or complex numbers or a metric space, for example. A sequence of functions all having the same domain and codomain is said to converge pointwise to a given function often written as if (and only if) the limit of the sequence evaluated at each point in the domain of is equal to , written as The function is said to be the pointwise limit function of the
The definition easily generalizes from sequences to nets . We say converge pointwises to , written as if (and only if) is the unique accumulation point of the net evaluated at each point in the domain of , written as
Sometimes, authors use the term bounded pointwise convergence when there is a constant such that . [3]
This concept is often contrasted with uniform convergence. To say that means that where is the common domain of and , and stands for the supremum. That is a stronger statement than the assertion of pointwise convergence: every uniformly convergent sequence is pointwise convergent, to the same limiting function, but some pointwise convergent sequences are not uniformly convergent. For example, if is a sequence of functions defined by then pointwise on the interval but not uniformly.
The pointwise limit of a sequence of continuous functions may be a discontinuous function, but only if the convergence is not uniform. For example, takes the value when is an integer and when is not an integer, and so is discontinuous at every integer.
The values of the functions need not be real numbers, but may be in any topological space, in order that the concept of pointwise convergence make sense. Uniform convergence, on the other hand, does not make sense for functions taking values in topological spaces generally, but makes sense for functions taking values in metric spaces, and, more generally, in uniform spaces.
Let denote the set of all functions from some given set into some topological space As described in the article on characterizations of the category of topological spaces, if certain conditions are met then it is possible to define a unique topology on a set in terms of which nets do and do not converge. The definition of pointwise convergence meets these conditions and so it induces a topology, called the topology of pointwise convergence, on the set of all functions of the form A net in converges in this topology if and only if it converges pointwise.
The topology of pointwise convergence is the same as convergence in the product topology on the space where is the domain and is the codomain. Explicitly, if is a set of functions from some set into some topological space then the topology of pointwise convergence on is equal to the subspace topology that it inherits from the product space when is identified as a subset of this Cartesian product via the canonical inclusion map defined by
If the codomain is compact, then by Tychonoff's theorem, the space is also compact.
In measure theory, one talks about almost everywhere convergence of a sequence of measurable functions defined on a measurable space. That means pointwise convergence almost everywhere, that is, on a subset of the domain whose complement has measure zero. Egorov's theorem states that pointwise convergence almost everywhere on a set of finite measure implies uniform convergence on a slightly smaller set.
Almost everywhere pointwise convergence on the space of functions on a measure space does not define the structure of a topology on the space of measurable functions on a measure space (although it is a convergence structure). For in a topological space, when every subsequence of a sequence has itself a subsequence with the same subsequential limit, the sequence itself must converge to that limit.
But consider the sequence of so-called "galloping rectangles" functions, which are defined using the floor function: let and mod and let
Then any subsequence of the sequence has a sub-subsequence which itself converges almost everywhere to zero, for example, the subsequence of functions which do not vanish at But at no point does the original sequence converge pointwise to zero. Hence, unlike convergence in measure and convergence, pointwise convergence almost everywhere is not the convergence of any topology on the space of functions.
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is not continuous. Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.
In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a function whose domain is a directed set. The codomain of this function is usually some topological space. Nets directly generalize the concept of a sequence in a metric space. Nets are primarily used in the fields of analysis and topology, where they are used to characterize many important topological properties that, sequences are unable to characterize. Nets are in one-to-one correspondence with filters.
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members. The number of elements is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an arbitrary index set.
In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions converges uniformly to a limiting function on a set as the function domain if, given any arbitrarily small positive number , a number can be found such that each of the functions differs from by no more than at every pointin. Described in an informal way, if converges to uniformly, then how quickly the functions approach is "uniform" throughout in the following sense: in order to guarantee that differs from by less than a chosen distance , we only need to make sure that is larger than or equal to a certain , which we can find without knowing the value of in advance. In other words, there exists a number that could depend on but is independent of , such that choosing will ensure that for all . In contrast, pointwise convergence of to merely guarantees that for any given in advance, we can find such that, for that particular, falls within of whenever .
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.
In mathematical analysis, semicontinuity is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function is uppersemicontinuous at a point if, roughly speaking, the function values for arguments near are not much higher than
In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.
In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol. If such a limit exists, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests.
In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.
In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function space.
In mathematical analysis, the uniform norm assigns to real- or complex-valued bounded functions defined on a set the non-negative number
In measure theory, Lebesgue's dominated convergence theorem gives a mild sufficient condition under which limits and integrals of a sequence of functions can be interchanged. More technically it says that if a sequence of functions is bounded in absolute value by an integrable function and is almost everywhere point wise convergent to a function then the sequence convergences in to its point wise limit, and in particular the integral of the limit is the limit of the integrals. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration.
The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.
In mathematics, Helly's selection theorem states that a uniformly bounded sequence of monotone real functions admits a convergent subsequence. In other words, it is a sequential compactness theorem for the space of uniformly bounded monotone functions. It is named for the Austrian mathematician Eduard Helly. A more general version of the theorem asserts compactness of the space BVloc of functions locally of bounded total variation that are uniformly bounded at a point.
In mathematics compact convergence is a type of convergence that generalizes the idea of uniform convergence. It is associated with the compact-open topology.
In mathematics, there are many senses in which a sequence or a series is said to be convergent. This article describes various modes of convergence in the settings where they are defined. For a list of modes of convergence, see Modes of convergence
In mathematics, Kuratowski convergence or Painlevé-Kuratowski convergence is a notion of convergence for subsets of a topological space. First introduced by Paul Painlevé in lectures on mathematical analysis in 1902, the concept was popularized in texts by Felix Hausdorff and Kazimierz Kuratowski. Intuitively, the Kuratowski limit of a sequence of sets is where the sets "accumulate".
In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the canonical LF-topology, that makes into a complete Hausdorff locally convex TVS. The strong dual space of is called the space of distributions on and is denoted by where the "" subscript indicates that the continuous dual space of denoted by is endowed with the strong dual topology.
Convergence proof techniques are canonical components of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.