Convergence space

Last updated

In mathematics, a convergence space, also called a generalized convergence, is a set together with a relation called a convergence that satisfies certain properties relating elements of X with the family of filters on X. Convergence spaces generalize the notions of convergence that are found in point-set topology, including metric convergence and uniform convergence. Every topological space gives rise to a canonical convergence but there are convergences, known as non-topological convergences, that do not arise from any topological space. [1] An example of convergence that is in general non-topological is almost everywhere convergence. Many topological properties have generalizations to convergence spaces.

Contents

Besides its ability to describe notions of convergence that topologies are unable to, the category of convergence spaces has an important categorical property that the category of topological spaces lacks. The category of topological spaces is not an exponential category (or equivalently, it is not Cartesian closed) although it is contained in the exponential category of pseudotopological spaces, which is itself a subcategory of the (also exponential) category of convergence spaces. [2]

Definition and notation

Preliminaries and notation

Denote the power set of a set by The upward closure or isotonization in [3] of a family of subsets is defined as

and similarly the downward closure of is If (respectively ) then is said to be upward closed (respectively downward closed) in

For any families and declare that

if and only if for every there exists some such that

or equivalently, if then if and only if The relation defines a preorder on If which by definition means then is said to be subordinate to and also finer than and is said to be coarser than The relation is called subordination. Two families and are called equivalent (with respect to subordination) if and

A filter on a set is a non-empty subset that is upward closed in closed under finite intersections, and does not have the empty set as an element (i.e. ). A prefilter is any family of sets that is equivalent (with respect to subordination) to some filter or equivalently, it is any family of sets whose upward closure is a filter. A family is a prefilter, also called a filter base, if and only if and for any there exists some such that A filter subbase is any non-empty family of sets with the finite intersection property; equivalently, it is any non-empty family that is contained as a subset of some filter (or prefilter), in which case the smallest (with respect to or ) filter containing is called the filter (on ) generated by . The set of all filters (respectively prefilters, filter subbases, ultrafilters) on will be denoted by (respectively ). The principal or discrete filter on at a point is the filter

Definition of (pre)convergence spaces

For any if then define

and if then define

so if then if and only if The set is called the underlying set of and is denoted by [1]

A preconvergence [1] [2] [4] on a non-empty set is a binary relation with the following property:

  1. Isotone : if then implies
    • In words, any limit point of is necessarily a limit point of any finer/subordinate family

and if in addition it also has the following property:

  1. Centered: if then
    • In words, for every the principal/discrete ultrafilter at converges to

then the preconvergence is called a convergence [1] on A generalized convergence or a convergence space (respectively a preconvergence space) is a pair consisting of a set together with a convergence (respectively preconvergence) on [1]

A preconvergence can be canonically extended to a relation on also denoted by by defining [1]

for all This extended preconvergence will be isotone on meaning that if then implies

Examples

Convergence induced by a topological space

Let be a topological space with If then is said to converge to a point in written in if where denotes the neighborhood filter of in The set of all such that in is denoted by or simply and elements of this set are called limit points of in The (canonical) convergence associated with or induced by is the convergence on denoted by defined for all and all by:

if and only if in

Equivalently, it is defined by for all

A (pre)convergence that is induced by some topology on is called a topological (pre)convergence; otherwise, it is called a non-topological (pre)convergence.

Power

Let and be topological spaces and let denote the set of continuous maps The power with respect to and is the coarsest topology on that makes the natural coupling into a continuous map [2] The problem of finding the power has no solution unless is locally compact. However, if searching for a convergence instead of a topology, then there always exists a convergence that solves this problem (even without local compactness). [2] In other words, the category of topological spaces is not an exponential category (i.e. or equivalently, it is not Cartesian closed) although it is contained in the exponential category of pseudotopologies, which is itself a subcategory of the (also exponential) category of convergences. [2]

Other named examples

Standard convergence on
The standard convergence on the real line is the convergence on defined for all and all [1] by:
if and only if
Discrete convergence
The discrete preconvergence on a non-empty set is defined for all and all [1] by:
if and only if
A preconvergence on is a convergence if and only if [1]
Empty convergence
The empty preconvergence on set non-empty is defined for all [1] by:
Although it is a preconvergence on it is not a convergence on The empty preconvergence on is a non-topological preconvergence because for every topology on the neighborhood filter at any given point necessarily converges to in
Chaotic convergence
The chaotic preconvergence on set non-empty is defined for all [1] by: The chaotic preconvergence on is equal to the canonical convergence induced by when is endowed with the indiscrete topology.

Properties

A preconvergence on set non-empty is called Hausdorff or T2 if is a singleton set for all [1] It is called T1 if for all and it is called T0 if for all distinct [1] Every T1 preconvergence on a finite set is Hausdorff. [1] Every T1 convergence on a finite set is discrete. [1]

While the category of topological spaces is not exponential (i.e. Cartesian closed), it can be extended to an exponential category through the use of a subcategory of convergence spaces. [2]

See also

Citations

Related Research Articles

In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is not continuous. Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.

In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.

In topology, the closure of a subset S of points in a topological space consists of all points in S together with all limit points of S. The closure of S may equivalently be defined as the union of S and its boundary, and also as the intersection of all closed sets containing S. Intuitively, the closure can be thought of as all the points that are either in S or "very near" S. A point which is in the closure of S is a point of closure of S. The notion of closure is in many ways dual to the notion of interior.

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Other well-known examples of TVSs include Banach spaces, Hilbert spaces and Sobolev spaces.

In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold.

In mathematics, a base (or basis; pl.: bases) for the topology τ of a topological space (X, τ) is a family of open subsets of X such that every open set of the topology is equal to the union of some sub-family of . For example, the set of all open intervals in the real number line is a basis for the Euclidean topology on because every open interval is an open set, and also every open subset of can be written as a union of some family of open intervals.

In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a set. They are equivalent to the more commonly used open set definition. They were first formalized by Kazimierz Kuratowski, and the idea was further studied by mathematicians such as Wacław Sierpiński and António Monteiro, among others.

In general topology, a branch of mathematics, a non-empty family A of subsets of a set is said to have the finite intersection property (FIP) if the intersection over any finite subcollection of is non-empty. It has the strong finite intersection property (SFIP) if the intersection over any finite subcollection of is infinite. Sets with the finite intersection property are also called centered systems and filter subbases.

In topology, a subbase for a topological space with topology is a subcollection of that generates in the sense that is the smallest topology containing as open sets. A slightly different definition is used by some authors, and there are other useful equivalent formulations of the definition; these are discussed below.

In functional and convex analysis, and related disciplines of mathematics, the polar set is a special convex set associated to any subset of a vector space lying in the dual space The bipolar of a subset is the polar of but lies in .

In the mathematical field of topology, a topological space is usually defined by declaring its open sets. However, this is not necessary, as there are many equivalent axiomatic foundations, each leading to exactly the same concept. For instance, a topological space determines a class of closed sets, of closure and interior operators, and of convergence of various types of objects. Each of these can instead be taken as the primary class of objects, with all of the others directly determined from that new starting point. For example, in Kazimierz Kuratowski's well-known textbook on point-set topology, a topological space is defined as a set together with a certain type of "closure operator," and all other concepts are derived therefrom. Likewise, the neighborhood-based axioms can be retraced to Felix Hausdorff's original definition of a topological space in Grundzüge der Mengenlehre.

In topology, a preclosure operator or Čech closure operator is a map between subsets of a set, similar to a topological closure operator, except that it is not required to be idempotent. That is, a preclosure operator obeys only three of the four Kuratowski closure axioms.

In mathematics, a filter on a set is a family of subsets such that:

  1. and
  2. if and , then
  3. If and , then

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

In mathematics, a polyadic space is a topological space that is the image under a continuous function of a topological power of an Alexandroff one-point compactification of a discrete space.

<span class="mw-page-title-main">Filters in topology</span> Use of filters to describe and characterize all basic topological notions and results.

Filters in topology, a subfield of mathematics, can be used to study topological spaces and define all basic topological notions such as convergence, continuity, compactness, and more. Filters, which are special families of subsets of some given set, also provide a common framework for defining various types of limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called ultrafilters have many useful technical properties and they may often be used in place of arbitrary filters.

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

In functional analysis, a branch of mathematics, two methods of constructing normed spaces from disks were systematically employed by Alexander Grothendieck to define nuclear operators and nuclear spaces. One method is used if the disk is bounded: in this case, the auxiliary normed space is with norm The other method is used if the disk is absorbing: in this case, the auxiliary normed space is the quotient space If the disk is both bounded and absorbing then the two auxiliary normed spaces are canonically isomorphic.

<span class="mw-page-title-main">Ultrafilter on a set</span> Maximal proper filter

In the mathematical field of set theory, an ultrafilter on a set is a maximal filter on the set In other words, it is a collection of subsets of that satisfies the definition of a filter on and that is maximal with respect to inclusion, in the sense that there does not exist a strictly larger collection of subsets of that is also a filter. Equivalently, an ultrafilter on the set can also be characterized as a filter on with the property that for every subset of either or its complement belongs to the ultrafilter.

References