STRAND7

Last updated
Strand7
Developer(s) Strand7 Pty. Ltd.
Stable release
3.1.1 / 30-Sep-2021
Operating system Windows
Type Finite Element Analysis Simulator
License Proprietary
Website

Strand7 is a Finite Element Analysis (FEA) software product developed by the company with the same name.

Contents

History

The Strand computer software was first developed by a group of academics from the University of Sydney and the University of New South Wales. Further to this early research work, an independent company called G+D Computing was established in 1988 to develop an FEA program that could be used commercially for industrial applications. Between 1988 and 1996 the company researched, developed and marketed a series of DOS and Unix based FEA programs, most notably its STRAND6 program. In 1996 the company commenced work on a completely new software development specifically for the Windows platform. [1] This product was first released in 2000 and was named Strand7. In 2005 the company also changed its name to Strand7 to better reflect its primary focus. [2]

Application

Some high-profile applications of Strand7 include the optimisation of the "Water Cube" Beijing National Aquatics Center for the 2008 Beijing Olympics, [3] the "Runner" sculpture that was placed on top of Sydney Tower during the 2000 Sydney Olympics [4] and the Terminal 2E roof, Charles de Gaulle Airport.

Analysis Capabilities

Strand7 is most commonly used for the construction and mechanical engineering sectors, but also has seen use in other areas of engineering including aeronautical, marine and mining.

Strand7 includes the following solvers:

Related Research Articles

<span class="mw-page-title-main">Mechanical engineering</span> Engineering discipline

Mechanical engineering is an engineering branch that combines engineering physics and mathematics principles with materials science, to design, analyze, manufacture, and maintain mechanical systems. It is one of the oldest and broadest of the engineering branches.

<span class="mw-page-title-main">Non-linear editing</span> Non-destructive audio, video, or image editing

Non-linear editing is a form of offline editing for audio, video, and image editing. In offline editing, the original content is not modified in the course of editing. In non-linear editing, edits are specified and modified by specialized software. A pointer-based playlist, effectively an edit decision list (EDL), for video and audio, or a directed acyclic graph for still images, is used to keep track of edits. Each time the edited audio, video, or image is rendered, played back, or accessed, it is reconstructed from the original source and the specified editing steps. Although this process is more computationally intensive than directly modifying the original content, changing the edits themselves can be almost instantaneous, and it prevents further generation loss as the audio, video, or image is edited.

SPICE is a general-purpose, open-source analog electronic circuit simulator. It is a program used in integrated circuit and board-level design to check the integrity of circuit designs and to predict circuit behavior.

<span class="mw-page-title-main">LS-DYNA</span>

LS-DYNA is an advanced general-purpose multiphysics simulation software package developed by the former Livermore Software Technology Corporation (LSTC), which was acquired by Ansys in 2019. While the package continues to contain more and more possibilities for the calculation of many complex, real world problems, its origins and core-competency lie in highly nonlinear transient dynamic finite element analysis (FEA) using explicit time integration. LS-DYNA is used by the automobile, aerospace, construction and civil engineering, military, manufacturing, and bioengineering industries.

NASTRAN is a finite element analysis (FEA) program that was originally developed for NASA in the late 1960s under United States government funding for the aerospace industry. The MacNeal-Schwendler Corporation (MSC) was one of the principal and original developers of the publicly available NASTRAN code. NASTRAN source code is integrated in a number of different software packages, which are distributed by a range of companies.

<span class="mw-page-title-main">NEi Nastran</span>

NEi Nastran was an engineering analysis and simulation software product of NEi Software Based on NASA's Structural Analysis program NASTRAN, the software is a finite element analysis (FEA) solver used to generate solutions for linear and nonlinear stress, dynamics, and heat transfer characteristics of structures and mechanical components. NEi Nastran software is used with all major industry pre and post processors including Femap, a product of Siemens PLM Software, in house brands NEi Nastran in-CAD, NEi Fusion, and NEi Works for SolidWorks. This software was acquired by Autodesk in May 2014.

<span class="mw-page-title-main">Solid Edge</span> Computer-aided design software

Solid Edge is a 3D CAD, parametric feature and synchronous technology solid modeling software. It runs on Microsoft Windows and provides solid modeling, assembly modelling and 2D orthographic view functionality for mechanical designers. Through third party applications it has links to many other Product Lifecycle Management (PLM) technologies.

Femap is an engineering analysis program sold by Siemens Digital Industries Software that is used to build finite element models of complex engineering problems ("pre-processing") and view solution results ("post-processing"). It runs on Microsoft Windows and provides CAD import, modeling and meshing tools to create a finite element model, as well as postprocessing functionality that allows mechanical engineers to interpret analysis results. The finite element method allows engineers to virtually model components, assemblies, or systems to determine behavior under a given set of boundary conditions, and is typically used in the design process to reduce costly prototyping and testing, evaluate differing designs and materials, and for structural optimization to reduce weight.

SAMCEF is a finite element analysis (FEA) software package dedicated to mechanical virtual prototyping. SAMCEF development started in 1965 at the Aerospace Laboratory of University of Liège. It was developed and sold by SAMTECH, a Belgian company, founded in 1986 and located in Liège, Belgium. SAMTECH s.a. was acquired by LMS in 2011.

<span class="mw-page-title-main">Abaqus</span>

Abaqus FEA is a software suite for finite element analysis and computer-aided engineering, originally released in 1978. The name and logo of this software are based on the abacus calculation tool. The Abaqus product suite consists of five core software products:

  1. Abaqus/CAE, or "Complete Abaqus Environment". It is a software application used for both the modeling and analysis of mechanical components and assemblies (pre-processing) and visualizing the finite element analysis result. A subset of Abaqus/CAE including only the post-processing module can be launched independently in the Abaqus/Viewer product.
  2. Abaqus/Standard, a general-purpose Finite-Element analyzer that employs implicit integration scheme (traditional).
  3. Abaqus/Explicit, a special-purpose Finite-Element analyzer that employs explicit integration scheme to solve highly nonlinear systems with many complex contacts under transient loads.
  4. Abaqus/CFD, a Computational Fluid Dynamics software application which provides advanced computational fluid dynamics capabilities with extensive support for preprocessing and postprocessing provided in Abaqus/CAE - discontinued in Abaqus 2017 and further releases.
  5. Abaqus/Electromagnetic, a Computational electromagnetics software application which solves advanced computational electromagnetic problems.

ROHR2 is a pipe stress analysis CAE system from SIGMA Ingenieurgesellschaft mbH, based in Unna, Germany. The software performs both static and dynamic analysis of complex piping and skeletal structures, and runs on Microsoft Windows platform.

NEi Software, founded as Noran Engineering, Inc. in 1991, is an engineering software company that develops, publishes and promotes FEA software programs including its flagship product NEi Nastran. The FEA algorithms allow engineers to analyze how a structure will behave under a variety of conditions. The types of analysis include linear and nonlinear stress, dynamic, and heat transfer analysis. MCT, PPFA, dynamic design analysis method, optimization, fatigue, CFD and event simulation are just some of the specialized types of analysis supported by the company.

Z88 is a software package for the finite element method (FEM) and topology optimization. A team led by Frank Rieg at the University of Bayreuth started development in 1985 and now the software is used by several universities, as well as small and medium-sized enterprises. Z88 is capable of calculating two and three dimensional element types with a linear approach. The software package contains several solvers and two post-processors and is available for Microsoft Windows, Mac OS X and Unix/Linux computers in 32-bit and 64-bit versions. Benchmark tests conducted in 2007 showed a performance on par with commercial software.

Altair Radioss is a multidisciplinary finite element solver developed by Altair Engineering. It can solve both linear and non-linear problems. It is a finite element solver using implicit and explicit integration schemes for the solution of engineering problems, from linear statics and linear dynamics to nonlinear transient dynamics and mechanical systems. This multidisciplinary solver enables designers to maximize performance related to durability, NVH, crash, safety, manufacturability, and fluid-structure interaction, in order to bring products to market faster.

The Bridge Software Institute is headquartered at the University of Florida (UF) in Gainesville, Florida. It was established in January 2000 to oversee the development of bridge related software products at UF. Today, Bridge Software Institute has a leadership position in the bridge software industry and Bridge Software Institute products are used by engineers nationwide, both in state Departments of Transportation and leading private consulting firms. Bridge Software Institute software is also used for the analysis of bridges in various countries by engineers around the world.

FEBio(Finite Elements for Biomechanics) is a software package for finite element analysis and was specifically designed for applications in biomechanics and bioengineering. It was developed in collaboration with research groups from the University of Utah and Columbia University (MBL).

ADINA is a commercial engineering simulation software program that is developed and distributed worldwide by ADINA R & D, Inc. The company was founded in 1986 by Dr. Klaus-Jürgen Bathe, and is headquartered in Watertown, Massachusetts, United States. On April 7, 2022, Bentley Systems acquired ADINA R&D, Inc.

<span class="mw-page-title-main">VisualFEA</span>

VisualFEA is a finite element analysis software program for Microsoft Windows and Mac OS X. It is developed and distributed by Intuition Software, Inc. of South Korea, and used chiefly for structural and geotechnical analysis. Its strongest point is its intuitive, user-friendly design based on graphical pre- and postprocessing capabilities. It has educational features for teaching and learning structural mechanics, and finite element analysis through graphical simulation. It is widely used in college-level courses related to structural mechanics and finite element methods.

SmartDO is a multidisciplinary design optimization software, based on the Direct Global Search technology developed and marketed by FEA-Opt Technology. SmartDO specialized in the CAE-Based optimization, such as CAE, FEA, CAD, CFD and automatic control, with application on various physics phenomena. It is both GUI and scripting driven, allowed to be integrated with almost any kind of CAD/CAE and in-house codes.

References

  1. 'Strand7 Specification'
  2. 'Strand7 Press Release' Archived 2007-10-18 at the Wayback Machine
  3. 'Water Cube' structure
  4. Olympic Sculptures