Interval finite element

Last updated
Maximum von Mises stress in plane stress problem with the interval parameters (calculated by using gradient method). Von-Mises-Max-8x8.gif
Maximum von Mises stress in plane stress problem with the interval parameters (calculated by using gradient method).

In numerical analysis, the interval finite element method (interval FEM) is a finite element method that uses interval parameters. Interval FEM can be applied in situations where it is not possible to get reliable probabilistic characteristics of the structure. This is important in concrete structures, wood structures, geomechanics, composite structures, biomechanics and in many other areas. [1] The goal of the Interval Finite Element is to find upper and lower bounds of different characteristics of the model (e.g. stress, displacements, yield surface etc.) and use these results in the design process. This is so called worst case design, which is closely related to the limit state design.

Contents

Worst case design requires less information than probabilistic design however the results are more conservative [Köylüoglu and Elishakoff 1998].[ citation needed ]

Applications of the interval parameters to the modeling of uncertainty

Consider the following equation: where a and b are real numbers, and .

Very often, the exact values of the parameters a and b are unknown.

Let's assume that and . In this case, it is necessary to solve the following equation

There are several definitions of the solution set of this equation with interval parameters.

United solution set

In this approach the solution is the following set

This is the most popular solution set of the interval equation and this solution set will be applied in this article.

In the multidimensional case the united solutions set is much more complicated. The solution set of the following system of linear interval equations is shown on the following picture Solution set.png

The exact solution set is very complicated, thus it is necessary to find the smallest interval which contains the exact solution set Solution-set-3.png or simply where See also

Parametric solution set of interval linear system

The Interval Finite Element Method requires the solution of a parameter-dependent system of equations (usually with a symmetric positive definite matrix.) An example of the solution set of general parameter dependent system of equations

is shown on the picture below. [2]

Interval-equation.gif

Algebraic solution

In this approach x is an interval number for which the equation is satisfied. In other words, the left side of the equation is equal to the right side of the equation. In this particular case the solution is because

If the uncertainty is larger, i.e. , then because

If the uncertainty is even larger, i.e. , then the solution doesn't exist. It is very complex to find a physical interpretation of the algebraic interval solution set. Thus, in applications, the united solution set is usually applied.

The method

Consider the PDE with the interval parameters

where is a vector of parameters which belong to given intervals

For example, the heat transfer equation where are the interval parameters (i.e. ).

Solution of the equation ( 1 ) can be defined in the following way

For example, in the case of the heat transfer equation

Solution is very complicated because of that in practice it is more interesting to find the smallest possible interval which contain the exact solution set .

For example, in the case of the heat transfer equation

Finite element method lead to the following parameter dependent system of algebraic equations where K is a stiffness matrix and Q is a right hand side.

Interval solution can be defined as a multivalued function

In the simplest case above system can be treat as a system of linear interval equations.

It is also possible to define the interval solution as a solution of the following optimization problem

In multidimensional case the interval solution can be written as

Interval solution versus probabilistic solution

It is important to know that the interval parameters generate different results than uniformly distributed random variables.

Interval parameter take into account all possible probability distributions (for ).

In order to define the interval parameter it is necessary to know only upper and lower bound .

Calculations of probabilistic characteristics require the knowledge of a lot of experimental results.

It is possible to show that the sum of n interval numbers is times wider than the sum of appropriate normally distributed random variables.

Sum of n interval number is equal to

Width of that interval is equal to

Consider normally distributed random variable X such that

Sum of n normally distributed random variable is a normally distributed random variable with the following characteristics (see Six Sigma)

We can assume that the width of the probabilistic result is equal to 6 sigma (compare Six Sigma).

Now we can compare the width of the interval result and the probabilistic result

Because of that the results of the interval finite element (or in general worst-case analysis) may be overestimated in comparison to the stochastic fem analysis (see also propagation of uncertainty). However, in the case of nonprobabilistic uncertainty it is not possible to apply pure probabilistic methods. Because probabilistic characteristic in that case are not known exactly (Elishakoff 2000).

It is possible to consider random (and fuzzy random variables) with the interval parameters (e.g. with the interval mean, variance etc.). Some researchers use interval (fuzzy) measurements in statistical calculations (e.g. Archived 2010-06-16 at the Wayback Machine ). As a results of such calculations we will get so called imprecise probability.

Imprecise probability is understood in a very wide sense. It is used as a generic term to cover all mathematical models which measure chance or uncertainty without sharp numerical probabilities. It includes both qualitative (comparative probability, partial preference orderings, ...) and quantitative modes (interval probabilities, belief functions, upper and lower previsions, ...). Imprecise probability models are needed in inference problems where the relevant information is scarce, vague or conflicting, and in decision problems where preferences may also be incomplete .

Simple example: modeling tension, compression, strain, and stress)

TensionCompression.JPG

1-dimension example

In the tension-compression problem, the following equation shows the relationship between displacement u and force P: where L is length, A is the area of a cross-section, and E is Young's modulus.

If the Young's modulus and force are uncertain, then

To find upper and lower bounds of the displacement u, calculate the following partial derivatives:

Calculate extreme values of the displacement as follows:

Calculate strain using following formula:

Calculate derivative of the strain using derivative from the displacements:

Calculate extreme values of the displacement as follows:

It is also possible to calculate extreme values of strain using the displacements then

The same methodology can be applied to the stress then and

If we treat stress as a function of strain then then

Structure is safe if stress is smaller than a given value i.e., this condition is true if

After calculation we know that this relation is satisfied if

The example is very simple but it shows the applications of the interval parameters in mechanics. Interval FEM use very similar methodology in multidimensional cases [Pownuk 2004].

However, in the multidimensional cases relation between the uncertain parameters and the solution is not always monotone. In those cases, more complicated optimization methods have to be applied. [1]

Multidimensional example

In the case of tension-compression problem the equilibrium equation has the following form where u is displacement, E is Young's modulus, A is an area of cross-section, and n is a distributed load. In order to get unique solution it is necessary to add appropriate boundary conditions e.g.

If Young's modulus E and n are uncertain then the interval solution can be defined in the following way

For each FEM element it is possible to multiply the equation by the test function v where

After integration by parts we will get the equation in the weak form where

Let's introduce a set of grid points , where is a number of elements, and linear shape functions for each FEM element where

left endpoint of the element, left endpoint of the element number "e". Approximate solution in the "e"-th element is a linear combination of the shape functions

After substitution to the weak form of the equation we will get the following system of equations

or in the matrix form

In order to assemble the global stiffness matrix it is necessary to consider an equilibrium equations in each node. After that the equation has the following matrix form where is the global stiffness matrix, is the solution vector, is the right hand side.

In the case of tension-compression problem

If we neglect the distributed load n

After taking into account the boundary conditions the stiffness matrix has the following form

Right-hand side has the following form

Let's assume that Young's modulus E, area of cross-section A and the load P are uncertain and belong to some intervals

The interval solution can be defined calculating the following way

Calculation of the interval vector is in general NP-hard, however in specific cases it is possible to calculate the solution which can be used in many engineering applications.

The results of the calculations are the interval displacements

Let's assume that the displacements in the column have to be smaller than some given value (due to safety).

The uncertain system is safe if the interval solution satisfy all safety conditions.

In this particular case or simple

In postprocessing it is possible to calculate the interval stress, the interval strain and the interval limit state functions and use these values in the design process.

The interval finite element method can be applied to the solution of problems in which there is not enough information to create reliable probabilistic characteristic of the structures (Elishakoff 2000). Interval finite element method can be also applied in the theory of imprecise probability.

Endpoints combination method

It is possible to solve the equation for all possible combinations of endpoints of the interval .
The list of all vertices of the interval can be written as .
Upper and lower bound of the solution can be calculated in the following way

Endpoints combination method gives solution which is usually exact; unfortunately the method has exponential computational complexity and cannot be applied to the problems with many interval parameters. [3]

Taylor expansion method

The function can be expanded by using Taylor series. In the simplest case the Taylor series use only linear approximation

Upper and lower bound of the solution can be calculated by using the following formula

The method is very efficient however it is not very accurate.
In order to improve accuracy it is possible to apply higher order Taylor expansion [Pownuk 2004].
This approach can be also applied in the interval finite difference method and the interval boundary element method.

Gradient method

If the sign of the derivatives is constant then the functions is monotone and the exact solution can be calculated very fast.

if then
if then

Extreme values of the solution can be calculated in the following way

In many structural engineering applications the method gives exact solution.
If the solution is not monotone the solution is usually reasonable. In order to improve accuracy of the method it is possible to apply monotonicity tests and higher order sensitivity analysis. The method can be applied to the solution of linear and nonlinear problems of computational mechanics [Pownuk 2004]. Applications of sensitivity analysis method to the solution of civil engineering problems can be found in the following paper [M.V. Rama Rao, A. Pownuk and I. Skalna 2008].
This approach can be also applied in the interval finite difference method and the interval boundary element method.

Element by element method

Muhanna and Mullen applied element by element formulation to the solution of finite element equation with the interval parameters. [4] Using that method it is possible to get the solution with guaranteed accuracy in the case of truss and frame structures.

Perturbation methods

The solution stiffness matrix and the load vector can be expanded by using perturbation theory. Perturbation theory lead to the approximate value of the interval solution. [5] The method is very efficient and can be applied to large problems of computational mechanics.

Response surface method

It is possible to approximate the solution by using response surface. Then it is possible to use the response surface to the get the interval solution. [6] Using response surface method it is possible to solve very complex problem of computational mechanics. [7]

Pure interval methods

Several authors tried to apply pure interval methods to the solution of finite element problems with the interval parameters. In some cases it is possible to get very interesting results e.g. [Popova, Iankov, Bonev 2008]. However, in general the method generates very overestimated results. [8]

Parametric interval systems

Popova [9] and Skalna [10] introduced the methods for the solution of the system of linear equations in which the coefficients are linear combinations of interval parameters. In this case it is possible to get very accurate solution of the interval equations with guaranteed accuracy.

See also

Related Research Articles

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.

<span class="mw-page-title-main">Hooke's law</span> Physical law: force needed to deform a spring scales linearly with distance

In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.

<span class="mw-page-title-main">Poisson bracket</span> Operation in Hamiltonian mechanics

In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

<span class="mw-page-title-main">Bloch's theorem</span> Fundamental theorem in condensed matter physics

In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential can be expressed as plane waves modulated by periodic functions. The theorem is named after the Swiss physicist Felix Bloch, who discovered the theorem in 1929. Mathematically, they are written

In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates (q, p) → that preserves the form of Hamilton's equations. This is sometimes known as form invariance. Although Hamilton's equations are preserved, it need not preserve the explicit form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations and Liouville's theorem.

In mathematics, the method of characteristics is a technique for solving partial differential equations. Typically, it applies to first-order equations, although more generally the method of characteristics is valid for any hyperbolic and parabolic partial differential equation. The method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data given on a suitable hypersurface.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In mechanics, virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for different displacements. Among all the possible displacements that a particle may follow, called virtual displacements, one will minimize the action. This displacement is therefore the displacement followed by the particle according to the principle of least action.

The work of a force on a particle along a virtual displacement is known as the virtual work.

<span class="mw-page-title-main">Ordinary least squares</span> Method for estimating the unknown parameters in a linear regression model

In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable in the input dataset and the output of the (linear) function of the independent variable. Some sources consider OLS to be linear regression.

The Rayleigh–Ritz method is a direct numerical method of approximating eigenvalues, originated in the context of solving physical boundary value problems and named after Lord Rayleigh and Walther Ritz.

The purpose of this page is to provide supplementary materials for the ordinary least squares article, reducing the load of the main article with mathematics and improving its accessibility, while at the same time retaining the completeness of exposition.

<span class="mw-page-title-main">Plate theory</span> Mathematical model of the stresses within flat plates under loading

In continuum mechanics, plate theories are mathematical descriptions of the mechanics of flat plates that draw on the theory of beams. Plates are defined as plane structural elements with a small thickness compared to the planar dimensions. The typical thickness to width ratio of a plate structure is less than 0.1. A plate theory takes advantage of this disparity in length scale to reduce the full three-dimensional solid mechanics problem to a two-dimensional problem. The aim of plate theory is to calculate the deformation and stresses in a plate subjected to loads.

<span class="mw-page-title-main">Kirchhoff–Love plate theory</span> Theory used to determine the stresses and deformations in thin plates

The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler-Bernoulli beam theory and was developed in 1888 by Love using assumptions proposed by Kirchhoff. The theory assumes that a mid-surface plane can be used to represent a three-dimensional plate in two-dimensional form.

<span class="mw-page-title-main">Reissner-Mindlin plate theory</span> Theory used to calculate the deformations and stresses in plates

The Reissner–Mindlin theory of plates is an extension of Kirchhoff–Love plate theory that takes into account shear deformations through-the-thickness of a plate. The theory was proposed in 1951 by Raymond Mindlin. A similar, but not identical, theory in static setting, had been proposed earlier by Eric Reissner in 1945. Both theories are intended for thick plates in which the normal to the mid-surface remains straight but not necessarily perpendicular to the mid-surface. The Reissner-Mindlin theory is used to calculate the deformations and stresses in a plate whose thickness is of the order of one tenth the planar dimensions while the Kirchhoff–Love theory is applicable to thinner plates.

<span class="mw-page-title-main">Matrix representation of Maxwell's equations</span>

In electromagnetism, a branch of fundamental physics, the matrix representations of the Maxwell's equations are a formulation of Maxwell's equations using matrices, complex numbers, and vector calculus. These representations are for a homogeneous medium, an approximation in an inhomogeneous medium. A matrix representation for an inhomogeneous medium was presented using a pair of matrix equations. A single equation using 4 × 4 matrices is necessary and sufficient for any homogeneous medium. For an inhomogeneous medium it necessarily requires 8 × 8 matrices.

References

  1. 1 2 "Interval equations". Archived from the original on 2011-10-05. Retrieved 2008-10-12.
  2. E. Popova, Parametric Solution Set of Interval Linear System Archived 2010-01-27 at the Wayback Machine
  3. A. Neumaier, Interval methods for systems of equations, Cambridge University Press, New York, 1990
  4. R.L. Muhanna, R.L. Mullen, Uncertainty in Mechanics Problems - Interval - Based Approach. Journal of Engineering Mechanics, Vol.127, No.6, 2001, 557-556
  5. Z. Qiu and I. Elishakoff, Antioptimization of structures with large uncertain but non-random parameters via interval analysis Computer Methods in Applied Mechanics and Engineering, Volume 152, Issues 3-4, 24 January 1998, Pages 361-372
  6. U.O. Akpan, T.S. Koko, I.R. Orisamolu, B.K. Gallant, Practical fuzzy finite element analysis of structures, Finite Elements in Analysis and Design, 38, pp. 93–111, 2000.
  7. M. Beer, Evaluation of Inconsistent Engineering data, The Third workshop on Reliable Engineering Computing (REC08) Georgia Institute of Technology, February 20–22, 2008, Savannah, Georgia, USA.
  8. Kulpa Z., Pownuk A., Skalna I., Analysis of linear mechanical structures with uncertainties by means of interval methods. Computer Assisted Mechanics and Engineering Sciences, vol. 5, 1998, pp. 443–477
  9. E. Popova, On the Solution of Parametrised Linear Systems. W. Kraemer, J. Wolff von Gudenberg (Eds.): Scientific Computing, Validated Numerics, Interval Methods. Kluwer Acad. Publishers, 2001, pp. 127–138.
  10. I. Skalna, A Method for Outer Interval Solution of Systems of Linear Equations Depending Linearly on Interval Parameters, Reliable Computing, Volume 12, Number 2, April, 2006, pp. 107–120