Mixed finite element method

Last updated

In numerical analysis, the mixed finite element method, is a type of finite element method in which extra fields to be solved are introduced during the posing a partial differential equation problem. Somewhat related is the hybrid finite element method. The extra fields are constrained by using Lagrange multiplier fields. To be distinguished from the mixed finite element method, usual finite element methods that do not introduce such extra fields are also called irreducible or primal finite element methods. [1] The mixed finite element method is efficient for some problems that would be numerically ill-posed if discretized by using the irreducible finite element method; one example of such problems is to compute the stress and strain fields in an almost incompressible elastic body.

In mixed methods, the Lagrange multiplier fields inside the elements, usually enforcing the applicable partial differential equations. [2] This results in a saddle point system having negative pivots and eigenvalues, rendering the system matrix to be non-positive which results in complications in solving for it. In sparse direct solvers, pivoting may be needed, where ultimately the resulting matrix has 2x2 blocks on the diagonal, [3] rather than a working towards a completely pure LLH Cholesky decomposition for positive definite symmetric or Hermitian systems. Pivoting may result in unpredictable memory usage increases. For iterative solvers, only GMRES based solvers work, rather than slightly "cheaper" MINRES based solvers.

In hybrid methods, the Lagrange fields are for jumps of fields between elements, living on the boundary of the elements, weakly enforcing continuity; continuity from fields in the elements does not need to be enforced through shared degrees of freedom between elements anymore. Both mixing and hybridization can be applied simultaneously. [4] These enforcements are "weak", i.e. occur upon having the solutions and possibly only at some points or e.g. matching moment integral conditions, rather than "strong" in which case the conditions are fulfilled directly in the type of solutions sought. Apart from the harmonics (non-trivial solution to the homogeneous equations at zero loads), hybridization allows for static Guyan condensation of the discontinuous fields internal to the elements, reducing the number of degrees of freedom, and moreover reducing or eliminating the number of negative eigenvalues and pivots resulting from application of the mixed method.

Related Research Articles

Numerical analysis Field of mathematics

Numerical analysis is the study of algorithms that use numerical approximation for the problems of mathematical analysis. Numerical analysis naturally finds application in all fields of engineering and the physical sciences, but in the 21st century also the life sciences, social sciences, medicine, business and even the arts have adopted elements of scientific computations. The growth in computing power has revolutionized the use of realistic mathematical models in science and engineering, and subtle numerical analysis is required to implement these detailed models of the world. For example, ordinary differential equations appear in celestial mechanics ; numerical linear algebra is important for data analysis; stochastic differential equations and Markov chains are essential in simulating living cells for medicine and biology.

Partial differential equation Type of Multivariable Function

In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function.

Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs).

In numerical analysis, a multigrid method is an algorithm for solving differential equations using a hierarchy of discretizations. They are an example of a class of techniques called multiresolution methods, very useful in problems exhibiting multiple scales of behavior. For example, many basic relaxation methods exhibit different rates of convergence for short- and long-wavelength components, suggesting these different scales be treated differently, as in a Fourier analysis approach to multigrid. MG methods can be used as solvers as well as preconditioners.

Computational electromagnetics Branch of physics

Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment.

Electromagnetic field solvers are specialized programs that solve Maxwell's equations directly. They form a part of the field of electronic design automation, or EDA, and are commonly used in the design of integrated circuits and printed circuit boards. They are used when a solution from first principles is needed, or the highest accuracy is required.

The finite-difference frequency-domain (FDFD) method is a numerical solution method for problems usually in electromagnetism and sometimes in acoustics, based on finite-difference approximations of the derivative operators in the differential equation being solved.

Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of. Numerical linear algebra uses properties of vectors and matrices to develop computer algorithms that minimize the error introduced by the computer, and is also concerned with ensuring that the algorithm is as efficient as possible.

The goal of modal analysis in structural mechanics is to determine the natural mode shapes and frequencies of an object or structure during free vibration. It is common to use the finite element method (FEM) to perform this analysis because, like other calculations using the FEM, the object being analyzed can have arbitrary shape and the results of the calculations are acceptable. The types of equations which arise from modal analysis are those seen in eigensystems. The physical interpretation of the eigenvalues and eigenvectors which come from solving the system are that they represent the frequencies and corresponding mode shapes. Sometimes, the only desired modes are the lowest frequencies because they can be the most prominent modes at which the object will vibrate, dominating all the higher frequency modes.

In computational mathematics, a matrix-free method is an algorithm for solving a linear system of equations or an eigenvalue problem that does not store the coefficient matrix explicitly, but accesses the matrix by evaluating matrix-vector products. Such methods can be preferable when the matrix is so big that storing and manipulating it would cost a lot of memory and computing time, even with the use of methods for sparse matrices. Many iterative methods allow for a matrix-free implementation, including:

In mathematics, the Trefftz method is a method for the numerical solution of partial differential equations named after the German mathematician Erich Trefftz(de) (1888–1937). It falls within the class of finite element methods.

In mathematics, in particular numerical analysis, the FETI method is an iterative substructuring method for solving systems of linear equations from the finite element method for the solution of elliptic partial differential equations, in particular in computational mechanics In each iteration, FETI requires the solution of a Neumann problem in each substructure and the solution of a coarse problem. The simplest version of FETI with no preconditioner in the substructure is scalable with the number of substructures but the condition number grows polynomially with the number of elements per substructure. FETI with a preconditioner consisting of the solution of a Dirichlet problem in each substructure is scalable with the number of substructures and its condition number grows only polylogarithmically with the number of elements per substructure. The coarse space in FETI consists of the nullspace on each substructure.

Domain decomposition methods

In mathematics, numerical analysis, and numerical partial differential equations, domain decomposition methods solve a boundary value problem by splitting it into smaller boundary value problems on subdomains and iterating to coordinate the solution between adjacent subdomains. A coarse problem with one or few unknowns per subdomain is used to further coordinate the solution between the subdomains globally. The problems on the subdomains are independent, which makes domain decomposition methods suitable for parallel computing. Domain decomposition methods are typically used as preconditioners for Krylov space iterative methods, such as the conjugate gradient method, GMRES, and LOBPCG.

In numerical analysis, the balancing domain decomposition method (BDD) is an iterative method to find the solution of a symmetric positive definite system of linear algebraic equations arising from the finite element method. In each iteration, it combines the solution of local problems on non-overlapping subdomains with a coarse problem created from the subdomain nullspaces. BDD requires only solution of subdomain problems rather than access to the matrices of those problems, so it is applicable to situations where only the solution operators are available, such as in oil reservoir simulation by mixed finite elements. In its original formulation, BDD performs well only for 2nd order problems, such elasticity in 2D and 3D. For 4th order problems, such as plate bending, it needs to be modified by adding to the coarse problem special basis functions that enforce continuity of the solution at subdomain corners, which makes it however more expensive. The BDDC method uses the same corner basis functions as, but in an additive rather than multiplicative fashion. The dual counterpart to BDD is FETI, which enforces the equality of the solution between the subdomain by Lagrange multipliers. The base versions of BDD and FETI are not mathematically equivalent, though a special version of FETI designed to be robust for hard problems has the same eigenvalues and thus essentially the same performance as BDD.

In numerical analysis, mortar methods are discretization methods for partial differential equations, which use separate finite element discretization on nonoverlapping subdomains. The meshes on the subdomains do not match on the interface, and the equality of the solution is enforced by Lagrange multipliers, judiciously chosen to preserve the accuracy of the solution. Mortar discretizations lend themselves naturally to the solution by iterative domain decomposition methods such as FETI and balancing domain decomposition In the engineering practice in the finite element method, continuity of solutions between non-matching subdomains is implemented by multiple-point constraints.

Finite element method Numerical method for solving physical or engineering problems

The finite element method (FEM) is a widely used method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a general numerical method for solving partial differential equations in two or three space variables. To solve a problem, the FEM subdivides a large system into smaller, simpler parts that are called finite elements. This is achieved by a particular space discretization in the space dimensions, which is implemented by the construction of a mesh of the object: the numerical domain for the solution, which has a finite number of points. The finite element method formulation of a boundary value problem finally results in a system of algebraic equations. The method approximates the unknown function over the domain. The simple equations that model these finite elements are then assembled into a larger system of equations that models the entire problem. The FEM then uses variational methods from the calculus of variations to approximate a solution by minimizing an associated error function.

Matrix (mathematics) Two-dimensional array of numbers with specific operations

In mathematics, a matrix is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns. For example, the dimension of the matrix below is 2 × 3, because there are two rows and three columns:

In the finite element method for the numerical solution of elliptic partial differential equations, the stiffness matrix represents the system of linear equations that must be solved in order to ascertain an approximate solution to the differential equation.

GetFEM++

GetFEM++ is a generic finite element C++ library with interfaces for Python, Matlab and Scilab. It aims at providing finite element methods and elementary matrix computations for solving linear and non-linear problems numerically. Its flexibility in choosing among different finite element approximations and numerical integration methods is one of its distinguishing characteristics.

References

  1. Olek C Zienkiewicz, Robert L Taylor and J.Z. Zhu. The Finite Element Method: Its Basis and Fundamentals. Elsevier.
  2. Arnold, Douglas. "Douglas Arnold 2016 Woudschoten Conference" (PDF).
  3. "Sparse block factorization of saddle point matrices". Linear Algebra and its Applications. 502: 214–242. 2016-08-01. doi: 10.1016/j.laa.2015.07.042 . ISSN   0024-3795.
  4. "2019 Feb 1, Bernardo Cockburn, University of Minnesota, Variational principles for hybridizable discontinuous Galerkin methods: A short story". PSU Media Space. Retrieved 2021-05-02.