Stochastic partial differential equation

Last updated

Stochastic partial differential equations (SPDEs) generalize partial differential equations via random force terms and coefficients, in the same way ordinary stochastic differential equations generalize ordinary differential equations.

Contents

They have relevance to quantum field theory, statistical mechanics, and spatial modeling. [1] [2]

Examples

One of the most studied SPDEs is the stochastic heat equation, [3] which may formally be written as

where is the Laplacian and denotes space-time white noise. Other examples also include stochastic versions of famous linear equations, such as the wave equation [4] and the Schrödinger equation. [5]

Discussion

One difficulty is their lack of regularity. In one dimensional space, solutions to the stochastic heat equation are only almost 1/2-Hölder continuous in space and 1/4-Hölder continuous in time. For dimensions two and higher, solutions are not even function-valued, but can be made sense of as random distributions.

For linear equations, one can usually find a mild solution via semigroup techniques. [6]

However, problems start to appear when considering non-linear equations. For example

where is a polynomial. In this case it is not even clear how one should make sense of the equation. Such an equation will also not have a function-valued solution in dimension larger than one, and hence no pointwise meaning. It is well known that the space of distributions has no product structure. This is the core problem of such a theory. This leads to the need of some form of renormalization.

An early attempt to circumvent such problems for some specific equations was the so called da Prato–Debussche trick which involved studying such non-linear equations as perturbations of linear ones. [7] However, this can only be used in very restrictive settings, as it depends on both the non-linear factor and on the regularity of the driving noise term. In recent years, the field has drastically expanded, and now there exists a large machinery to guarantee local existence for a variety of sub-critical SPDEs. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical physics, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

<span class="mw-page-title-main">Elliptic operator</span> Type of differential operator

In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which implies the key property that the principal symbol is invertible, or equivalently that there are no real characteristic directions.

Second-order linear partial differential equations (PDEs) are classified as either elliptic, hyperbolic, or parabolic. Any second-order linear PDE in two variables can be written in the form

In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, S. Watanabe, I. Shigekawa, and so on finally completed the foundations.

Burgers' equation or Bateman–Burgers equation is a fundamental partial differential equation and convection–diffusion equation occurring in various areas of applied mathematics, such as fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow. The equation was first introduced by Harry Bateman in 1915 and later studied by Johannes Martinus Burgers in 1948.

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.

In mathematics, and more specifically in partial differential equations, Duhamel's principle is a general method for obtaining solutions to inhomogeneous linear evolution equations like the heat equation, wave equation, and vibrating plate equation. It is named after Jean-Marie Duhamel who first applied the principle to the inhomogeneous heat equation that models, for instance, the distribution of heat in a thin plate which is heated from beneath. For linear evolution equations without spatial dependency, such as a harmonic oscillator, Duhamel's principle reduces to the method of variation of parameters technique for solving linear inhomogeneous ordinary differential equations. It is also an indispensable tool in the study of nonlinear partial differential equations such as the Navier–Stokes equations and nonlinear Schrödinger equation where one treats the nonlinearity as an inhomogeneity.

In mathematics — specifically, in stochastic analysis — the infinitesimal generator of a Feller process is a Fourier multiplier operator that encodes a great deal of information about the process.

In the theory of stochastic processes, filtering describes the problem of determining the state of a system from an incomplete and potentially noisy set of observations. While originally motivated by problems in engineering, filtering found applications in many fields from signal processing to finance.

<span class="mw-page-title-main">Moshe Zakai</span> Israeli scientist (born 1926–2015)

Moshe Zakai was a Distinguished Professor at the Technion, Israel in electrical engineering, member of the Israel Academy of Sciences and Humanities and Rothschild Prize winner.

The system size expansion, also known as van Kampen's expansion or the Ω-expansion, is a technique pioneered by Nico van Kampen used in the analysis of stochastic processes. Specifically, it allows one to find an approximation to the solution of a master equation with nonlinear transition rates. The leading order term of the expansion is given by the linear noise approximation, in which the master equation is approximated by a Fokker–Planck equation with linear coefficients determined by the transition rates and stoichiometry of the system.

In mathematics, the Kardar–Parisi–Zhang (KPZ) equation is a non-linear stochastic partial differential equation, introduced by Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang in 1986. It describes the temporal change of a height field with spatial coordinate and time coordinate :

In mathematical physics, the Whitham equation is a non-local model for non-linear dispersive waves.

Mean-field particle methods are a broad class of interacting type Monte Carlo algorithms for simulating from a sequence of probability distributions satisfying a nonlinear evolution equation. These flows of probability measures can always be interpreted as the distributions of the random states of a Markov process whose transition probabilities depends on the distributions of the current random states. A natural way to simulate these sophisticated nonlinear Markov processes is to sample a large number of copies of the process, replacing in the evolution equation the unknown distributions of the random states by the sampled empirical measures. In contrast with traditional Monte Carlo and Markov chain Monte Carlo methods these mean-field particle techniques rely on sequential interacting samples. The terminology mean-field reflects the fact that each of the samples interacts with the empirical measures of the process. When the size of the system tends to infinity, these random empirical measures converge to the deterministic distribution of the random states of the nonlinear Markov chain, so that the statistical interaction between particles vanishes. In other words, starting with a chaotic configuration based on independent copies of initial state of the nonlinear Markov chain model, the chaos propagates at any time horizon as the size the system tends to infinity; that is, finite blocks of particles reduces to independent copies of the nonlinear Markov process. This result is called the propagation of chaos property. The terminology "propagation of chaos" originated with the work of Mark Kac in 1976 on a colliding mean-field kinetic gas model.

Supersymmetric theory of stochastic dynamics or stochastics (STS) is an exact theory of stochastic (partial) differential equations (SDEs), the class of mathematical models with the widest applicability covering, in particular, all continuous time dynamical systems, with and without noise. The main utility of the theory from the physical point of view is a rigorous theoretical explanation of the ubiquitous spontaneous long-range dynamical behavior that manifests itself across disciplines via such phenomena as 1/f, flicker, and crackling noises and the power-law statistics, or Zipf's law, of instantonic processes like earthquakes and neuroavalanches. From the mathematical point of view, STS is interesting because it bridges the two major parts of mathematical physics – the dynamical systems theory and topological field theories. Besides these and related disciplines such as algebraic topology and supersymmetric field theories, STS is also connected with the traditional theory of stochastic differential equations and the theory of pseudo-Hermitian operators.

In physics and mathematics, the Klein–Kramers equation or sometimes referred as Kramers–Chandrasekhar equation is a partial differential equation that describes the probability density function f of a Brownian particle in phase space (r, p). It is a special case of the Fokker–Planck equation.

In mathematics, stochastic analysis on manifolds or stochastic differential geometry is the study of stochastic analysis over smooth manifolds. It is therefore a synthesis of stochastic analysis and differential geometry.

References

  1. Prévôt, Claudia; Röckner, Michael (2007). A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics. Berlin Heidelberg: Springer-Verlag. ISBN   978-3-540-70780-6.
  2. Krainski, Elias T.; Gómez-Rubio, Virgilio; Bakka, Haakon; Lenzi, Amanda; Castro-Camilo, Daniela; Simpson, Daniel; Lindgren, Finn; Rue, Håvard (2018). Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA. Boca Raton, FL: Chapman and Hall/CRC Press. ISBN   978-1-138-36985-6.
  3. Edwards, S.F.; Wilkinson, D.R. (1982-05-08). "The Surface Statistics of a Granular Aggregate". Proc. R. Soc. Lond. A. 381 (1780): 17–31. doi:10.1098/rspa.1982.0056.
  4. Dalang, Robert C.; Frangos, N. E. (1998). "The Stochastic Wave Equation in Two Spatial Dimensions". The Annals of Probability. 26 (1): 187–212. ISSN   0091-1798.
  5. Diósi, Lajos; Strunz, Walter T. (1997-11-24). "The non-Markovian stochastic Schrödinger equation for open systems". Physics Letters A. 235 (6): 569–573. arXiv: quant-ph/9706050 . doi:10.1016/S0375-9601(97)00717-2. ISSN   0375-9601.
  6. Walsh, John B. (1986). Carmona, René; Kesten, Harry; Walsh, John B.; Hennequin, P. L. (eds.). "An introduction to stochastic partial differential equations". École d'Été de Probabilités de Saint Flour XIV - 1984. Lecture Notes in Mathematics. Springer Berlin Heidelberg. 1180: 265–439. doi:10.1007/bfb0074920. ISBN   978-3-540-39781-6.
  7. Da Prato, Giuseppe; Debussche, Arnaud (2003). "Strong Solutions to the Stochastic Quantization Equations". Annals of Probability. 31 (4): 1900–1916. JSTOR   3481533.
  8. Corwin, Ivan; Shen, Hao (2020). "Some recent progress in singular stochastic partial differential equations". Bull. Amer. Math. Soc. 57 (3): 409–454. doi: 10.1090/bull/1670 .

Further reading