C0-semigroup

Last updated

In mathematical analysis, a C0-semigroup, also known as a strongly continuous one-parameter semigroup, is a generalization of the exponential function. Just as exponential functions provide solutions of scalar linear constant coefficient ordinary differential equations, strongly continuous semigroups provide solutions of linear constant coefficient ordinary differential equations in Banach spaces. Such differential equations in Banach spaces arise from e.g. delay differential equations and partial differential equations.

Contents

Formally, a strongly continuous semigroup is a representation of the semigroup (R+,+) on some Banach space X that is continuous in the strong operator topology.

Formal definition

A strongly continuous semigroup on a Banach space is a map (where is the space of bounded operators on ) such that

  1. ,   (the identity operator on )
  2. , as .

The first two axioms are algebraic, and state that is a representation of the semigroup ; the last is topological, and states that the map is continuous in the strong operator topology.

Infinitesimal generator

The infinitesimal generatorA of a strongly continuous semigroup T is defined by

whenever the limit exists. The domain of A, D(A), is the set of xX for which this limit does exist; D(A) is a linear subspace and A is linear on this domain. [1] The operator A is closed, although not necessarily bounded, and the domain is dense in X. [2]

The strongly continuous semigroup T with generator A is often denoted by the symbol (or, equivalently, ). This notation is compatible with the notation for matrix exponentials, and for functions of an operator defined via functional calculus (for example, via the spectral theorem).

Uniformly continuous semigroup

A uniformly continuous semigroup is a strongly continuous semigroup T such that

holds. In this case, the infinitesimal generator A of T is bounded and we have

and

Conversely, any bounded operator

is the infinitesimal generator of a uniformly continuous semigroup given by

.

Thus, a linear operator A is the infinitesimal generator of a uniformly continuous semigroup if and only if A is a bounded linear operator. [3] If X is a finite-dimensional Banach space, then any strongly continuous semigroup is a uniformly continuous semigroup. For a strongly continuous semigroup which is not a uniformly continuous semigroup the infinitesimal generator A is not bounded. In this case, does not need to converge.

Examples

Multiplication semigroup

Consider the Banach space endowed with the sup norm . Let be a continuous function with . The operator with domain is a closed densely defined operator and generates the multiplication semigroup where Multiplication operators can be viewed as the infinite dimensional generalisation of diagonal matrices and a lot of the properties of can be derived by properties of . For example is bounded on if and only if is bounded. [4]

Translation semigroup

Let be the space of bounded, uniformly continuous functions on endowed with the sup norm. The (left) translation semigroup is given by .

Its generator is the derivative with domain . [5]

Abstract Cauchy problems

Consider the abstract Cauchy problem:

where A is a closed operator on a Banach space X and xX. There are two concepts of solution of this problem:

Any classical solution is a mild solution. A mild solution is a classical solution if and only if it is continuously differentiable. [6]

The following theorem connects abstract Cauchy problems and strongly continuous semigroups.

Theorem: [7] Let A be a closed operator on a Banach space X. The following assertions are equivalent:

  1. for all xX there exists a unique mild solution of the abstract Cauchy problem,
  2. the operator A generates a strongly continuous semigroup,
  3. the resolvent set of A is nonempty and for all xD(A) there exists a unique classical solution of the Cauchy problem.

When these assertions hold, the solution of the Cauchy problem is given by u(t) = T(t)x with T the strongly continuous semigroup generated by A.

Generation theorems

In connection with Cauchy problems, usually a linear operator A is given and the question is whether this is the generator of a strongly continuous semigroup. Theorems which answer this question are called generation theorems. A complete characterization of operators that generate exponentially bounded strongly continuous semigroups is given by the Hille–Yosida theorem. Of more practical importance are however the much easier to verify conditions given by the Lumer–Phillips theorem.

Special classes of semigroups

Uniformly continuous semigroups

The strongly continuous semigroup T is called uniformly continuous if the map t  T(t) is continuous from [0,∞) to L(X).

The generator of a uniformly continuous semigroup is a bounded operator.

Analytic semigroups

Contraction semigroups

A C0-semigroup Γ(t), t  0, is called a quasicontraction semigroup if there is a constant ω such that ||Γ(t)||  exp(ωt) for all t  0. Γ(t) is called a contraction semigroup if ||Γ(t)||  1 for all t  0. [8]

Differentiable semigroups

A strongly continuous semigroup T is called eventually differentiable if there exists a t0 > 0 such that T(t0)XD(A) (equivalently: T(t)XD(A) for all t  t0) and T is immediately differentiable if T(t)X  D(A) for all t > 0.

Every analytic semigroup is immediately differentiable.

An equivalent characterization in terms of Cauchy problems is the following: the strongly continuous semigroup generated by A is eventually differentiable if and only if there exists a t1  0 such that for all x  X the solution u of the abstract Cauchy problem is differentiable on (t1, ∞). The semigroup is immediately differentiable if t1 can be chosen to be zero.

Compact semigroups

A strongly continuous semigroup T is called eventually compact if there exists a t0 > 0 such that T(t0) is a compact operator (equivalently [9] if T(t) is a compact operator for all t  t0) . The semigroup is called immediately compact if T(t) is a compact operator for all t > 0.

Norm continuous semigroups

A strongly continuous semigroup is called eventually norm continuous if there exists a t0  0 such that the map t  T(t) is continuous from (t0,∞) to L(X). The semigroup is called immediately norm continuous if t0 can be chosen to be zero.

Note that for an immediately norm continuous semigroup the map t  T(t) may not be continuous in t = 0 (that would make the semigroup uniformly continuous).

Analytic semigroups, (eventually) differentiable semigroups and (eventually) compact semigroups are all eventually norm continuous. [10]

Stability

Exponential stability

The growth bound of a semigroup T is the constant

It is so called as this number is also the infimum of all real numbers ω such that there exists a constant M (≥ 1) with

for all t ≥ 0.

The following are equivalent: [11]

  1. There exist M,ω>0 such that for all t  0:
  2. The growth bound is negative: ω0 < 0,
  3. The semigroup converges to zero in the uniform operator topology: ,
  4. There exists a t0 > 0 such that ,
  5. There exists a t1 > 0 such that the spectral radius of T(t1) is strictly smaller than 1,
  6. There exists a p  [1,∞) such that for all x  X: ,
  7. For all p  [1,∞) and all x  X:

A semigroup that satisfies these equivalent conditions is called exponentially stable or uniformly stable (either of the first three of the above statements is taken as the definition in certain parts of the literature). That the Lp conditions are equivalent to exponential stability is called the Datko-Pazy theorem.

In case X is a Hilbert space there is another condition that is equivalent to exponential stability in terms of the resolvent operator of the generator: [12] all λ with positive real part belong to the resolvent set of A and the resolvent operator is uniformly bounded on the right half plane, i.e. (λI  A)1 belongs to the Hardy space . This is called the Gearhart-Pruss theorem.

The spectral bound of an operator A is the constant

,

with the convention that s(A) = −∞ if the spectrum of A is empty.

The growth bound of a semigroup and the spectral bound of its generator are related by [13] s(A) ≤ ω0(T). There are examples [14] where s(A) < ω0(T). If s(A) = ω0(T), then T is said to satisfy the spectral determined growth condition. Eventually norm-continuous semigroups satisfy the spectral determined growth condition. [15] This gives another equivalent characterization of exponential stability for these semigroups:

Note that eventually compact, eventually differentiable, analytic and uniformly continuous semigroups are eventually norm-continuous so that the spectral determined growth condition holds in particular for those semigroups.

Strong stability

A strongly continuous semigroup T is called strongly stable or asymptotically stable if for all x  X: .

Exponential stability implies strong stability, but the converse is not generally true if X is infinite-dimensional (it is true for X finite-dimensional).

The following sufficient condition for strong stability is called the Arendt–Batty–Lyubich–Phong theorem: [16] [17] Assume that

  1. T is bounded: there exists a M 1 such that ,
  2. A has not point spectrum on the imaginary axis, and
  3. The spectrum of A located on the imaginary axis is countable.

Then T is strongly stable.

If X is reflexive then the conditions simplify: if T is bounded, A has no eigenvalues on the imaginary axis and the spectrum of A located on the imaginary axis is countable, then T is strongly stable.

See also

Notes

  1. Partington (2004) page 23
  2. Partington (2004) page 24
  3. Pazy, A. (1983), Semigroups of Linear Operators and Applications to Partial Differential Equations, New York: Springer-Verlag, p. 2, ISBN   0-387-90845-5
  4. Klaus-Jochen Engel (2006), A short course on operator semigroups (in German), New York, N.Y.: Springer, pp. 20ff, ISBN   0-387-36619-9
  5. Klaus-Jochen Engel (2006), A short course on operator semigroups (in German), New York, N.Y.: Springer, p. 51, ISBN   0-387-36619-9
  6. Arendt et al. Proposition 3.1.2
  7. Arendt et al. Theorem 3.1.12
  8. Renardy, Michael; Rogers, Robert C. (2004). An introduction to partial differential equations. Texts in Applied Mathematics 13 (Second ed.). New York: Springer-Verlag. p. xiv+434. ISBN   0-387-00444-0. MR 2028503
  9. Engel and Nagel Lemma II.4.22
  10. Engel and Nagel (diagram II.4.26)
  11. Engel and Nagel Section V.1.b
  12. Engel and Nagel Theorem V.1.11
  13. Engel and Nagel Proposition IV2.2
  14. Engel and Nagel Section IV.2.7, Luo et al. Example 3.6
  15. Engel and Nagel Corollary 4.3.11
  16. Arendt, Wolfgang; Batty, Charles (1988), "Tauberian theorems and stability of one-parameter semigroups", Transactions of the American Mathematical Society, 306 (2): 837–852, doi: 10.1090/S0002-9947-1988-0933321-3
  17. Lyubich, Yu; Phong, Vu Quoc (1988), "Asymptotic stability of linear differential equations in Banach spaces", Studia Mathematica, 88 (1): 37–42, doi: 10.4064/sm-88-1-37-42

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Other well-known examples of TVSs include Banach spaces, Hilbert spaces and Sobolev spaces.

In real analysis the Heine–Borel theorem, named after Eduard Heine and Émile Borel, states:

In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space for which the canonical evaluation map from into its bidual is a homeomorphism. A normed space is reflexive if and only if this canonical evaluation map is surjective, in which case this evaluation map is an isometric isomorphism and the normed space is a Banach space. Those spaces for which the canonical evaluation map is surjective are called semi-reflexive spaces.

In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces. Informally, the operator norm of a linear map is the maximum factor by which it "lengthens" vectors.

In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.

In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.

In mathematics, Stone's theorem on one-parameter unitary groups is a basic theorem of functional analysis that establishes a one-to-one correspondence between self-adjoint operators on a Hilbert space and one-parameter families

In mathematics, infinite-dimensional holomorphy is a branch of functional analysis. It is concerned with generalizations of the concept of holomorphic function to functions defined and taking values in complex Banach spaces, typically of infinite dimension. It is one aspect of nonlinear functional analysis.

In functional analysis, the Hille–Yosida theorem characterizes the generators of strongly continuous one-parameter semigroups of linear operators on Banach spaces. It is sometimes stated for the special case of contraction semigroups, with the general case being called the Feller–Miyadera–Phillips theorem. The contraction semigroup case is widely used in the theory of Markov processes. In other scenarios, the closely related Lumer–Phillips theorem is often more useful in determining whether a given operator generates a strongly continuous contraction semigroup. The theorem is named after the mathematicians Einar Hille and Kōsaku Yosida who independently discovered the result around 1948.

In the mathematical field of analysis, the Nash–Moser theorem, discovered by mathematician John Forbes Nash and named for him and Jürgen Moser, is a generalization of the inverse function theorem on Banach spaces to settings when the required solution mapping for the linearized problem is not bounded.

In mathematics, the Lumer–Phillips theorem, named after Günter Lumer and Ralph Phillips, is a result in the theory of strongly continuous semigroups that gives a necessary and sufficient condition for a linear operator in a Banach space to generate a contraction semigroup.

In mathematics – specifically, in operator theory – a densely defined operator or partially defined operator is a type of partially defined function. In a topological sense, it is a linear operator that is defined "almost everywhere". Densely defined operators often arise in functional analysis as operations that one would like to apply to a larger class of objects than those for which they a priori "make sense".

In functional analysis, the dual norm is a measure of size for a continuous linear function defined on a normed vector space.

In mathematics, convenient vector spaces are locally convex vector spaces satisfying a very mild completeness condition.

In mathematics, an abstract differential equation is a differential equation in which the unknown function and its derivatives take values in some generic abstract space. Equations of this kind arise e.g. in the study of partial differential equations: if to one of the variables is given a privileged position and all the others are put together, an ordinary "differential" equation with respect to the variable which was put in evidence is obtained. Adding boundary conditions can often be translated in terms of considering solutions in some convenient function spaces.

This is a glossary for the terminology in a mathematical field of functional analysis.

References