Zakai equation

Last updated

In filtering theory the Zakai equation is a linear stochastic partial differential equation for the un-normalized density of a hidden state. In contrast, the Kushner equation gives a non-linear stochastic partial differential equation for the normalized density of the hidden state. In principle either approach allows one to estimate a quantity function (the state of a dynamical system) from noisy measurements, even when the system is non-linear (thus generalizing the earlier results of Wiener and Kalman for linear systems and solving a central problem in estimation theory). The application of this approach to a specific engineering situation may be problematic however, as these equations are quite complex. [1] [2] The Zakai equation is a bilinear stochastic partial differential equation. It was named after Moshe Zakai. [3]

Contents

Overview

Assume the state of the system evolves according to

and a noisy measurement of the system state is available:

where are independent Wiener processes. Then the unnormalized conditional probability density of the state at time t is given by the Zakai equation:

where

is a Kolmogorov forward operator.

As previously mentioned, is an unnormalized density and thus does not necessarily integrate to 1. After solving for , integration and normalization can be done if desired (an extra step not required in the Kushner approach).

Note that if the last term on the right hand side is omitted (by choosing h identically zero), the result is a nonstochastic PDE: the familiar Fokker–Planck equation, which describes the evolution of the state when no measurement information is available.

See also

Related Research Articles

<span class="mw-page-title-main">Partial differential equation</span> Type of differential equation

In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function.

The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion, resulting from the random movements and collisions of the particles. In mathematics, it is related to Markov processes, such as random walks, and applied in many other fields, such as materials science, information theory, and biophysics. The diffusion equation is a special case of the convection–diffusion equation, when bulk velocity is zero. It is equivalent to the heat equation under some circumstances.

The Hamilton-Jacobi-Bellman (HJB) equation is a nonlinear partial differential equation that provides necessary and sufficient conditions for optimality of a control with respect to a loss function. Its solution is the value function of the optimal control problem which, once known, can be used to obtain the optimal control by taking the maximizer of the Hamiltonian involved in the HJB equation.

Burgers' equation or Bateman–Burgers equation is a fundamental partial differential equation and convection–diffusion equation occurring in various areas of applied mathematics, such as fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow. The equation was first introduced by Harry Bateman in 1915 and later studied by Johannes Martinus Burgers in 1948.

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.

<span class="mw-page-title-main">Differential equation</span> Type of functional equation (mathematics)

In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.

In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface. Many of the equations of mechanics are hyperbolic, and so the study of hyperbolic equations is of substantial contemporary interest. The model hyperbolic equation is the wave equation. In one spatial dimension, this is

In signal processing, a nonlinearfilter is a filter whose output is not a linear function of its input. That is, if the filter outputs signals R and S for two input signals r and s separately, but does not always output αR + βS when the input is a linear combination αr + βs.

The Kolmogorov backward equation (KBE) (diffusion) and its adjoint sometimes known as the Kolmogorov forward equation (diffusion) are partial differential equations (PDE) that arise in the theory of continuous-time continuous-state Markov processes. Both were published by Andrey Kolmogorov in 1931. Later it was realized that the forward equation was already known to physicists under the name Fokker–Planck equation; the KBE on the other hand was new.

A parabolic partial differential equation is a type of partial differential equation (PDE). Parabolic PDEs are used to describe a wide variety of time-dependent phenomena, including heat conduction, particle diffusion, and pricing of derivative investment instruments.

In the theory of stochastic processes, filtering describes the problem of determining the state of a system from an incomplete and potentially noisy set of observations. While originally motivated by problems in engineering, filtering found applications in many fields from signal processing to finance.

Stochastic partial differential equations (SPDEs) generalize partial differential equations via random force terms and coefficients, in the same way ordinary stochastic differential equations generalize ordinary differential equations.

<span class="mw-page-title-main">Moshe Zakai</span> Israeli scientist (born 1926–2015)

Moshe Zakai was a Distinguished Professor at the Technion, Israel in electrical engineering, member of the Israel Academy of Sciences and Humanities and Rothschild Prize winner.

In image processing and computer vision, anisotropic diffusion, also called Perona–Malik diffusion, is a technique aiming at reducing image noise without removing significant parts of the image content, typically edges, lines or other details that are important for the interpretation of the image. Anisotropic diffusion resembles the process that creates a scale space, where an image generates a parameterized family of successively more and more blurred images based on a diffusion process. Each of the resulting images in this family are given as a convolution between the image and a 2D isotropic Gaussian filter, where the width of the filter increases with the parameter. This diffusion process is a linear and space-invariant transformation of the original image. Anisotropic diffusion is a generalization of this diffusion process: it produces a family of parameterized images, but each resulting image is a combination between the original image and a filter that depends on the local content of the original image. As a consequence, anisotropic diffusion is a non-linear and space-variant transformation of the original image.

In filtering theory the Kushner equation is an equation for the conditional probability density of the state of a stochastic non-linear dynamical system, given noisy measurements of the state. It therefore provides the solution of the nonlinear filtering problem in estimation theory. The equation is sometimes referred to as the Stratonovich–Kushnerequation. However, the correct equation in terms of Itō calculus was first derived by Kushner although a more heuristic Stratonovich version of it appeared already in Stratonovich's works in late fifties. However, the derivation in terms of Itō calculus is due to Richard Bucy.

Stochastic quantum mechanics is an interpretation of quantum mechanics. This interpretation is based on a reformulation of quantum mechancis in which the dynamics of all particles is governed by a stochastic differential equation. Thus, according to the stochastic interpretation, quantum particles follow well-defined random trajectories in space(time), similar to a Brownian motion.

In mathematics, the slow manifold of an equilibrium point of a dynamical system occurs as the most common example of a center manifold. One of the main methods of simplifying dynamical systems, is to reduce the dimension of the system to that of the slow manifold—center manifold theory rigorously justifies the modelling. For example, some global and regional models of the atmosphere or oceans resolve the so-called quasi-geostrophic flow dynamics on the slow manifold of the atmosphere/oceanic dynamics, and is thus crucial to forecasting with a climate model.

In probability theory, a McKean–Vlasov process is a stochastic process described by a stochastic differential equation where the coefficients of the diffusion depend on the distribution of the solution itself. The equations are a model for Vlasov equation and were first studied by Henry McKean in 1966. It is an example of propagation of chaos, in that it can be obtained as a limit of a mean-field system of interacting particles: as the number of particles tends to infinity, the interactions between any single particle and the rest of the pool will only depend on the particle itself.

In quantum probability, the Belavkin equation, also known as Belavkin-Schrödinger equation, quantum filtering equation, stochastic master equation, is a quantum stochastic differential equation describing the dynamics of a quantum system undergoing observation in continuous time. It was derived and henceforth studied by Viacheslav Belavkin in 1988.

Projection filters are a set of algorithms based on stochastic analysis and information geometry, or the differential geometric approach to statistics, used to find approximate solutions for filtering problems for nonlinear state-space systems. The filtering problem consists of estimating the unobserved signal of a random dynamical system from partial noisy observations of the signal. The objective is computing the probability distribution of the signal conditional on the history of the noise-perturbed observations. This distribution allows for calculations of all statistics of the signal given the history of observations. If this distribution has a density, the density satisfies specific stochastic partial differential equations (SPDEs) called Kushner-Stratonovich equation, or Zakai equation. It is known that the nonlinear filter density evolves in an infinite dimensional function space.

References

  1. Sritharan, S. S. (1994). "Nonlinear filtering of stochastic Navier–Stokes equations". In Funaki, T.; Woyczynski, W. A. (eds.). Nonlinear Stochastic PDEs: Burgers Turbulence and Hydrodynamic Limit (PDF). Springer-Verlag. pp. 247–260. ISBN   0-387-94624-1.
  2. Hobbs, S. L.; Sritharan, S. S. (1996). "Nonlinear filtering theory for stochastic reaction–diffusion equations". In Gretsky, N.; Goldstein, J.; Uhl, J. J. (eds.). Probability and Modern Analysis (PDF). Marcel Dekker. pp. 219–234.
  3. Zakai, M. (1969). "On the optimal filtering of diffusion processes". Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete . 11 (3): 230–243. doi: 10.1007/BF00536382 . MR   0242552. S2CID   119763576. Zbl   0164.19201.

Further reading