Brownian surface

Last updated
A single realisation of three-dimensional Brownian surface Brownian surface.png
A single realisation of three-dimensional Brownian surface

A Brownian surface is a fractal surface generated via a fractal elevation function. [1] [2] [3]

Contents

The Brownian surface is named after Brownian motion.

Example

For instance, in the three-dimensional case, where two variables X and Y are given as coordinates, the elevation function between any two points (x1, y1) and (x2, y2) can be set to have a mean or expected value that increases as the vector distance between (x1, y1) and (x2, y2). [1] There are, however, many ways of defining the elevation function. For instance, the fractional Brownian motion variable may be used, or various rotation functions may be used to achieve more natural looking surfaces. [2]

Generation of fractional Brownian surfaces

Efficient generation of fractional Brownian surfaces poses significant challenges. [4] Since the Brownian surface represents a Gaussian process with a nonstationary covariance function, one can use the Cholesky decomposition method. A more efficient method is Stein's method, [5] which generates an auxiliary stationary Gaussian process using the circulant embedding approach and then adjusts this auxiliary process to obtain the desired nonstationary Gaussian process. The figure below shows three typical realizations of fractional Brownian surfaces for different values of the roughness or Hurst parameter. The Hurst parameter is always between zero and one, with values closer to one corresponding to smoother surfaces. These surfaces were generated using a Matlab implementation of Stein's method.

Fractional Brownian surfaces for different values of the Hurst parameter. The larger the parameter, the smoother the surface. Fractional Brownian surfaces for different Hurst parameter.jpg
Fractional Brownian surfaces for different values of the Hurst parameter. The larger the parameter, the smoother the surface.

See also

Related Research Articles

In mathematics, a Diophantine equation is an equation of the form P(x1, ..., xj, y1, ..., yk) = 0 (usually abbreviated P(x, y) = 0) where P(x, y) is a polynomial with integer coefficients, where x1, ..., xj indicate parameters and y1, ..., yk indicate unknowns.

<span class="mw-page-title-main">Fractal landscape</span> Stochastically generated naturalistic terrain

A fractal landscape or fractal surface is generated using a stochastic algorithm designed to produce fractal behavior that mimics the appearance of natural terrain. In other words, the surface resulting from the procedure is not a deterministic, but rather a random surface that exhibits fractal behavior.

<span class="mw-page-title-main">Line drawing algorithm</span> Methods of approximating line segments for pixel displays

In computer graphics, a line drawing algorithm is an algorithm for approximating a line segment on discrete graphical media, such as pixel-based displays and printers. On such media, line drawing requires an approximation. Basic algorithms rasterize lines in one color. A better representation with multiple color gradations requires an advanced process, spatial anti-aliasing.

<span class="mw-page-title-main">Head-related transfer function</span> Response that characterizes how an ear receives a sound from a point in space

A head-related transfer function (HRTF) is a response that characterizes how an ear receives a sound from a point in space. As sound strikes the listener, the size and shape of the head, ears, ear canal, density of the head, size and shape of nasal and oral cavities, all transform the sound and affect how it is perceived, boosting some frequencies and attenuating others. Generally speaking, the HRTF boosts frequencies from 2–5 kHz with a primary resonance of +17 dB at 2,700 Hz. But the response curve is more complex than a single bump, affects a broad frequency spectrum, and varies significantly from person to person.

<span class="mw-page-title-main">Diffusion-limited aggregation</span>

Diffusion-limited aggregation (DLA) is the process whereby particles undergoing a random walk due to Brownian motion cluster together to form aggregates of such particles. This theory, proposed by T.A. Witten Jr. and L.M. Sander in 1981, is applicable to aggregation in any system where diffusion is the primary means of transport in the system. DLA can be observed in many systems such as electrodeposition, Hele-Shaw flow, mineral deposits, and dielectric breakdown.

Long-range dependence (LRD), also called long memory or long-range persistence, is a phenomenon that may arise in the analysis of spatial or time series data. It relates to the rate of decay of statistical dependence of two points with increasing time interval or spatial distance between the points. A phenomenon is usually considered to have long-range dependence if the dependence decays more slowly than an exponential decay, typically a power-like decay. LRD is often related to self-similar processes or fields. LRD has been used in various fields such as internet traffic modelling, econometrics, hydrology, linguistics and the earth sciences. Different mathematical definitions of LRD are used for different contexts and purposes.

In probability theory, fractional Brownian motion (fBm), also called a fractal Brownian motion, is a generalization of Brownian motion. Unlike classical Brownian motion, the increments of fBm need not be independent. fBm is a continuous-time Gaussian process on , that starts at zero, has expectation zero for all in , and has the following covariance function:

In statistics, a Gaussian random field (GRF) is a random field involving Gaussian probability density functions of the variables. A one-dimensional GRF is also called a Gaussian process. An important special case of a GRF is the Gaussian free field.

SIMCOS is a computer language and a development environment for computer simulation. In 1989 it was developed by Slovenian experts led by Borut Zupančič.

In structural engineering, the direct stiffness method, also known as the matrix stiffness method, is a structural analysis technique particularly suited for computer-automated analysis of complex structures including the statically indeterminate type. It is a matrix method that makes use of the members' stiffness relations for computing member forces and displacements in structures. The direct stiffness method is the most common implementation of the finite element method (FEM). In applying the method, the system must be modeled as a set of simpler, idealized elements interconnected at the nodes. The material stiffness properties of these elements are then, through linear algebra, compiled into a single matrix equation which governs the behaviour of the entire idealized structure. The structure’s unknown displacements and forces can then be determined by solving this equation. The direct stiffness method forms the basis for most commercial and free source finite element software.

<span class="mw-page-title-main">Ziggurat algorithm</span> Algorithm for pseudo-random number sampling

The ziggurat algorithm is an algorithm for pseudo-random number sampling. Belonging to the class of rejection sampling algorithms, it relies on an underlying source of uniformly-distributed random numbers, typically from a pseudo-random number generator, as well as precomputed tables. The algorithm is used to generate values from a monotonically decreasing probability distribution. It can also be applied to symmetric unimodal distributions, such as the normal distribution, by choosing a value from one half of the distribution and then randomly choosing which half the value is considered to have been drawn from. It was developed by George Marsaglia and others in the 1960s.

The Hurst exponent is used as a measure of long-term memory of time series. It relates to the autocorrelations of the time series, and the rate at which these decrease as the lag between pairs of values increases. Studies involving the Hurst exponent were originally developed in hydrology for the practical matter of determining optimum dam sizing for the Nile river's volatile rain and drought conditions that had been observed over a long period of time. The name "Hurst exponent", or "Hurst coefficient", derives from Harold Edwin Hurst (1880–1978), who was the lead researcher in these studies; the use of the standard notation H for the coefficient also relates to his name.

In computer graphics, a digital differential analyzer (DDA) is hardware or software used for interpolation of variables over an interval between start and end point. DDAs are used for rasterization of lines, triangles and polygons. They can be extended to non linear functions, such as perspective correct texture mapping, quadratic curves, and traversing voxels.

In mathematics, specifically transcendental number theory, the six exponentials theorem is a result that, given the right conditions on the exponents, guarantees the transcendence of at least one of a set of six exponentials.

In model theory, interpretation of a structure M in another structure N is a technical notion that approximates the idea of representing M inside N. For example, every reduct or definitional expansion of a structure N has an interpretation in N.

<span class="mw-page-title-main">Branching random walk</span> Stochastic process

In probability theory, a branching random walk is a stochastic process that generalizes both the concept of a random walk and of a branching process. At every generation, a branching random walk's value is a set of elements that are located in some linear space, such as the real line. Each element of a given generation can have several descendants in the next generation. The location of any descendant is the sum of its parent's location and a random variable.

Structural synthesis of programs (SSP) is a special form of (automatic) program synthesis that is based on propositional calculus. More precisely, it uses intuitionistic logic for describing the structure of a program in such a detail that the program can be automatically composed from pieces like subroutines or even computer commands. It is assumed that these pieces have been implemented correctly, hence no correctness verification of these pieces is needed. SSP is well suited for automatic composition of services for service-oriented architectures and for synthesis of large simulation programs.

In theoretical physics, Eugene Wigner and Erdal İnönü have discussed the possibility to obtain from a given Lie group a different (non-isomorphic) Lie group by a group contraction with respect to a continuous subgroup of it. That amounts to a limiting operation on a parameter of the Lie algebra, altering the structure constants of this Lie algebra in a nontrivial singular manner, under suitable circumstances.

In the mathematical discipline of graph theory, a rainbow matching in an edge-colored graph is a matching in which all the edges have distinct colors.

BASIC 1.0 is the standard BASIC language for Thomson computers, which is the reference for the entire range. This is an implementation of Microsoft BASIC (BASIC-69). It was used to introduce children from France to programming in the 1980s. Three languages were mainly taught: LSE, BASIC and LOGO. School textbooks programs were given in BASIC 1.0 for Thomson and sometimes in ExelBasic for the Exelvision EXL 100.

References

  1. 1 2 Russ, John C. (1994). Fractal surfaces, Volume 1. Springer. p. 167. ISBN   0-306-44702-9.
  2. 1 2 Xie, Heping (1993). Fractals in rock mechanics. CRC Press. p. 73. ISBN   90-5410-133-4.
  3. Vicsek, Tamás (1992). Fractal growth phenomena. World Scientific. p. 40. ISBN   981-02-0668-2.
  4. Kroese, Dirk P.; Botev, Zdravko I. (2015). "Spatial Process Simulation". In Schmidt, V. (ed.). Stochastic Geometry, Spatial Statistics and Random Fields. Lecture Notes in Mathematics. Vol. 2120. Berlin: Springer-Verlag. pp. 369–404. arXiv: 1308.0399 . doi:10.1007/978-3-319-10064-7_12. ISBN   978-3-319-10063-0.
  5. Stein, M. L. (2002). "Fast and exact simulation of fractional Brownian motion". Journal of Computational and Graphical Statistics. 11 (3): 587–599. doi:10.1198/106186002466. S2CID   121718378.