Finite volume method for unsteady flow

Last updated

Unsteady flows are characterized as flows in which the properties of the fluid are time dependent. It gets reflected in the governing equations as the time derivative of the properties are absent. For Studying Finite-volume method for unsteady flow there is some governing equations [1] >

Contents

Governing Equation

The conservation equation for the transport of a scalar in unsteady flow has the general form as [2]

is density and is conservative form of all fluid flow,
is the Diffusion coefficient and is the Source term. is Net rate of flow of out of fluid element(convection),
is Rate of increase of due to diffusion,
is Rate of increase of due to sources.

is Rate of increase of of fluid element(transient),

The first term of the equation reflects the unsteadiness of the flow and is absent in case of steady flows. The finite volume integration of the governing equation is carried out over a control volume and also over a finite time step ∆t.

The control volume integration of the steady part of the equation is similar to the steady state governing equation's integration. We need to focus on the integration of the unsteady component of the equation. To get a feel of the integration technique, we refer to the one-dimensional unsteady heat conduction equation. [3]

Now, holding the assumption of the temperature at the node being prevalent in the entire control volume, the left side of the equation can be written as [4]

By using a first order backward differencing scheme, we can write the right hand side of the equation as

Now to evaluate the right hand side of the equation we use a weighting parameter between 0 and 1, and we write the integration of

Now, the exact form of the final discretised equation depends on the value of . As the variance of is 0< <1, the scheme to be used to calculate depends on the value of the Thus\\

Different Schemes

1. Explicit Scheme in the explicit scheme the source term is linearised as . We substitute to get the explicit discretisation i.e.: [5]

where . One thing worth noting is that the right side contains values at the old time step and hence the left side can be calculated by forward matching in time. The scheme is based on backward differencing and its Taylor series truncation error is first order with respect to time. All coefficients need to be positive. For constant k and uniform grid spacing, this condition may be written as

This inequality sets a stringent condition on the maximum time step that can be used and represents a serious limitation on the scheme. It becomes very expensive to improve the spatial accuracy because the maximum possible time step needs to be reduced as the square of [6]

2. Crank-Nicolson scheme : the Crank-Nicolson method results from setting . The discretised unsteady heat conduction equation becomes

Where

Since more than one unknown value of T at the new time level is present in equation the method is implicit and simultaneous equations for all node points need to be solved at each time step. Although schemes with including the Crank-Nicolson scheme, are unconditionally stable for all values of the time step it is more important to ensure that all coefficients are positive for physically realistic and bounded results. This is the case if the coefficient of satisfies the following condition

which leads to

the Crank-Nicolson is based on central differencing and hence is second order accurate in time. The overall accuracy of a computation depends also on the spatial differencing practice, so the Crank-Nicolson scheme is normally used in conjunction with spatial central differencing

3. Fully implicit Scheme when the value of Ѳ is set to 1 we get the fully implicit scheme. The discretised equation is: [7]

Both sides of the equation contain temperatures at the new time step, and a system of algebraic equations must be solved at each time level. The time marching procedure starts with a given initial field of temperatures . The system of equations is solved after selecting time step . Next the solution is assigned to and the procedure is repeated to progress the solution by a further time step. It can be seen that all coefficients are positive, which makes the implicit scheme unconditionally stable for any size of time step. Since the accuracy of the scheme is only first-order in time, small time steps are needed to ensure the accuracy of results. The implicit method is recommended for general purpose transient calculations because of its robustness and unconditional stability

Related Research Articles

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842-1850 (Stokes).

<span class="mw-page-title-main">Potential flow</span> Velocity field as the gradient of a scalar function

In fluid dynamics, potential flow describes the velocity field as the gradient of a scalar function: the velocity potential. As a result, a potential flow is characterized by an irrotational velocity field, which is a valid approximation for several applications. The irrotationality of a potential flow is due to the curl of the gradient of a scalar always being equal to zero.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions.

In numerical methods, total variation diminishing (TVD) is a property of certain discretization schemes used to solve hyperbolic partial differential equations. The most notable application of this method is in computational fluid dynamics. The concept of TVD was introduced by Ami Harten.

In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

<span class="mw-page-title-main">Zoeppritz equations</span>

In geophysics and reflection seismology, the Zoeppritz equations are a set of equations that describe the partitioning of seismic wave energy at an interface, due to mode conversion. They are named after their author, the German geophysicist Karl Bernhard Zoeppritz, who died before they were published in 1919.

<span class="mw-page-title-main">Radiative transfer equation and diffusion theory for photon transport in biological tissue</span>

Photon transport in biological tissue can be equivalently modeled numerically with Monte Carlo simulations or analytically by the radiative transfer equation (RTE). However, the RTE is difficult to solve without introducing approximations. A common approximation summarized here is the diffusion approximation. Overall, solutions to the diffusion equation for photon transport are more computationally efficient, but less accurate than Monte Carlo simulations.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

In fluid dynamics, Luke's variational principle is a Lagrangian variational description of the motion of surface waves on a fluid with a free surface, under the action of gravity. This principle is named after J.C. Luke, who published it in 1967. This variational principle is for incompressible and inviscid potential flows, and is used to derive approximate wave models like the mild-slope equation, or using the averaged Lagrangian approach for wave propagation in inhomogeneous media.

<span class="mw-page-title-main">Mild-slope equation</span> Physics phenomenon and formula

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

Blade element momentum theory is a theory that combines both blade element theory and momentum theory. It is used to calculate the local forces on a propeller or wind-turbine blade. Blade element theory is combined with momentum theory to alleviate some of the difficulties in calculating the induced velocities at the rotor.

In astrophysics, the Chandrasekhar virial equations are a hierarchy of moment equations of the Euler equations, developed by the Indian American astrophysicist Subrahmanyan Chandrasekhar, and the physicist Enrico Fermi and Norman R. Lebovitz.

References

  1. https://books.google.com/books+finite+volume+method+for+unsteady+flows . Retrieved November 10, 2013.{{cite web}}: Missing or empty |title= (help)[ dead link ]
  2. An Introduction to Computational Fluid Dynamics H. K. Versteeg and W Malalasekra Chapter 8 page 168
  3. An Introduction to Computational Fluid Dynamics H. K. Versteeg and W Malalasekera Chapter 8 page 169
  4. Kim, Dongjoo; Choi, Haecheon (2000-08-10). "A Second-Order Time-Accurate Finite Volume Method for Unsteady Incompressible Flow on Hybrid Unstructured Grids". Journal of Computational Physics. 162 (2): 411–428. Bibcode:2000JCoPh.162..411K. doi:10.1006/jcph.2000.6546.
  5. An Introduction to Computational Fluid Dynamics H. K. Versteeg and W Malalasekera Chapter 8 page 171
  6. http://opencourses.emu.edu.tr/mod/resource/view.php?id=489 topic 7
  7. http://opencourses.emu.edu.tr/course/view.php?id=27&lang=en topic 7