Volcanology

Last updated
A volcanologist sampling lava using a rock hammer and a bucket of water Sampling lava with hammer and bucket.jpg
A volcanologist sampling lava using a rock hammer and a bucket of water
Eruption of Stromboli (Isole Eolie/Italia), ca. 100m (300ft) vertically. Exposure of several seconds. The dashed trajectories are the result of lava pieces with a bright hot side and a cool dark side rotating in mid-air. Stromboli Eruption.jpg
Eruption of Stromboli (Isole Eolie/Italia), ca. 100m (300ft) vertically. Exposure of several seconds. The dashed trajectories are the result of lava pieces with a bright hot side and a cool dark side rotating in mid-air.

Volcanology (also spelled vulcanology) is the study of volcanoes, lava, magma and related geological, geophysical and geochemical phenomena (volcanism). The term volcanology is derived from the Latin word vulcan . Vulcan was the ancient Roman god of fire.

Contents

A volcanologist is a geologist who studies the eruptive activity and formation of volcanoes and their current and historic eruptions. Volcanologists frequently visit volcanoes, especially active ones, to observe volcanic eruptions, collect eruptive products including tephra (such as ash or pumice), rock and lava samples. One major focus of enquiry is the prediction of eruptions; there is currently no accurate way to do this, but predicting or forecasting eruptions, like predicting earthquakes, could save many lives.

Modern volcanology

Volcanologist examining tephra horizons in south-central Iceland. Icelandic tephra.JPG
Volcanologist examining tephra horizons in south-central Iceland.
A diagram of a destructive plate margin, where subduction fuels volcanic activity at the subduction zones of tectonic plate boundaries. Destructive plate margin.png
A diagram of a destructive plate margin, where subduction fuels volcanic activity at the subduction zones of tectonic plate boundaries.

In 1841, the first volcanological observatory, the Vesuvius Observatory, was founded in the Kingdom of the Two Sicilies. [1] Volcanology advances have required more than just structured observation, and the science relies upon the understanding and integration of knowledge in many fields including geology, tectonics, physics, chemistry and mathematics, with many advances only being able to occur after the advance had occurred in another field of science. For example the study of radioactivity only commenced in 1896, [2] and its application to the theory of plate tectonics and radiometric dating took about 50 years after this. Many other developments in fluid dynamics, experimental physics and chemistry, techniques of mathematical modelling, instrumentation and in other sciences have been applied to volcanology since 1841.

Techniques

Seismic observations are made using seismographs deployed near volcanic areas, watching out for increased seismicity during volcanic events, in particular looking for long period harmonic tremors, which signal magma movement through volcanic conduits. [3]

Surface deformation monitoring includes the use of geodetic techniques such as leveling, tilt, strain, angle and distance measurements through tiltmeters, total stations and EDMs. This also includes GNSS observations and InSAR. [4] Surface deformation indicates magma upwelling: increased magma supply produces bulges in the volcanic center's surface.

Gas emissions may be monitored with equipment including portable ultra-violet spectrometers (COSPEC, now superseded by the miniDOAS), which analyzes the presence of volcanic gases such as sulfur dioxide; or by infra-red spectroscopy (FTIR). Increased gas emissions, and more particularly changes in gas compositions, may signal an impending volcanic eruption. [3]

Temperature changes are monitored using thermometers and observing changes in thermal properties of volcanic lakes and vents, which may indicate upcoming activity. [5]

Satellites are widely used to monitor volcanoes, as they allow a large area to be monitored easily. They can measure the spread of an ash plume, such as the one from Eyjafjallajökull's 2010 eruption, [6] as well as SO2 emissions. [7] InSAR and thermal imaging can monitor large, scarcely populated areas where it would be too expensive to maintain instruments on the ground.

Other geophysical techniques (electrical, gravity and magnetic observations) include monitoring fluctuations and sudden change in resistivity, gravity anomalies or magnetic anomaly patterns that may indicate volcano-induced faulting and magma upwelling. [5]

Stratigraphic analyses includes analyzing tephra and lava deposits and dating these to give volcano eruption patterns, [8] with estimated cycles of intense activity and size of eruptions. [3]

Compositional analysis has been very successful in the grouping of volcanoes by type, [9] :274 origin of magma, [9] :274 including matching of volcanoes to a mantle plume of a particular hotspot, mantle plume melting depths, [10] the history of recycled subducted crust, [9] :302–3 matching of tephra deposits to each other and to volcanoes of origin, [11] and the understanding the formation and evolution of magma reservoirs, [9] :296–303 an approach which has now been validated by real time sampling. [12]

Forecasting

Some of the techniques mentioned above, combined with modelling, have proved useful and successful in the forecasting of some eruptions, [13] :1–2 such as the evacuation of the locality around Mount Pinatubo in 1991 that may have saved 20,000 lives. [14] Short-term forecasts tend to use seismic or multiple monitoring data with long term forecasting involving the study of the previous history of local volcanism. [13] :1 However, volcanology forecasting does not just involve predicting the next initial onset time of an eruption, as it might also address the size of a future eruption, and evolution of an eruption once it has begun. [13] :1–2

History

Volcanology has an extensive history. The earliest known recording of a volcanic eruption may be on a wall painting dated to about 7,000 BCE found at the Neolithic site at Çatal Höyük in Anatolia, Turkey. [15] :203 This painting has been interpreted as a depiction of an erupting volcano, with a cluster of houses below shows a twin peaked volcano in eruption, with a town at its base (though archaeologists now question this interpretation). [16] The volcano may be either Hasan Dağ, or its smaller neighbour, Melendiz Dağ. [17]

Greco-Roman philosophy

Eruption of Vesuvius in 1822. The eruption of CE 79 would have appeared very similar. Vesuvius1822scrope.jpg
Eruption of Vesuvius in 1822. The eruption of CE 79 would have appeared very similar.

The classical world of Greece and the early Roman Empire explained volcanoes as sites of various gods. Greeks considered that Hephaestus, the god of fire, sat below the volcano Etna, forging the weapons of Zeus. The Greek word used to describe volcanoes was etna, or hiera, after Heracles, the son of Zeus. The Roman poet Virgil, in interpreting the Greek mythos, held that the giant Enceladus was buried beneath Etna by the goddess Athena as punishment for rebellion against the gods; the mountain's rumblings were his tormented cries, the flames his breath and the tremors his railing against the bars of his prison. Enceladus' brother Mimas was buried beneath Vesuvius by Hephaestus, and the blood of other defeated giants welled up in the Phlegrean Fields surrounding Vesuvius. [18]

The Greek philosopher Empedocles (c. 490-430 BCE) saw the world divided into four elemental forces, of Earth, Air, Fire and Water. Volcanoes, Empedocles maintained, were the manifestation of Elemental Fire. Plato contended that channels of hot and cold waters flow in inexhaustible quantities through subterranean rivers. In the depths of the earth snakes a vast river of fire, the Pyriphlegethon, which feeds all the world's volcanoes. Aristotle considered underground fire as the result of "the...friction of the wind when it plunges into narrow passages."

Wind played a key role in volcano explanations until the 16th century after Anaxagoras, in the fifth century BC, had proposed eruptions were caused by a great wind. [19] Lucretius, a Roman philosopher, claimed Etna was completely hollow and the fires of the underground driven by a fierce wind circulating near sea level. Ovid believed that the flame was fed from "fatty foods" and eruptions stopped when the food ran out. Vitruvius contended that sulfur, alum and bitumen fed the deep fires. Observations by Pliny the Elder noted the presence of earthquakes preceded an eruption; he died in the eruption of Vesuvius in 79 CE while investigating it at Stabiae. His nephew, Pliny the Younger, gave detailed descriptions of the eruption in which his uncle died, attributing his death to the effects of toxic gases. Such eruptions have been named Plinian in honour of the two authors.

Renaissance observations

After the first eruption of Mount St. Helens on May 18, five more explosive eruptions occurred in 1980, including this event on July 22. This eruption sent pumice and ash 6 to 11 miles (10-18 kilometers) into the air, and was visible in Seattle, Washington, 100 miles (160 kilometers) to the north. The view here is from the south. MSH80 st helens eruption plume 07-22-80.jpg
After the first eruption of Mount St. Helens on May 18, five more explosive eruptions occurred in 1980, including this event on July 22. This eruption sent pumice and ash 6 to 11 miles (10-18 kilometers) into the air, and was visible in Seattle, Washington, 100 miles (160 kilometers) to the north. The view here is from the south.

Nuées ardentes were described from the Azores in 1580. Georgius Agricola argued the rays of the sun, as later proposed by Descartes had nothing to do with volcanoes. Agricola believed vapor under pressure caused eruptions of 'mointain oil' and basalt.

The Jesuit Athanasius Kircher (1602–1680) witnessed eruptions of Mount Etna and Stromboli, then visited the crater of Vesuvius and published his view of an Earth with a central fire connected to numerous others caused by the burning of sulfur, bitumen and coal. He published his view of this in Mundus Subterraneus with volcanoes acting as a type of safety valve. [20]

Johannes Kepler considered volcanoes as conduits for the tears and excrement of the Earth, voiding bitumen, tar and sulfur. [21] [ better source needed ] Descartes, pronouncing that God had created the Earth in an instant, declared he had done so in three layers; the fiery depths, [19] a layer of water, and the air. Volcanoes, he said, were formed where the rays of the sun pierced the earth.

Science wrestled with the ideas of the combustion of pyrite with water, that rock was solidified bitumen, and with notions of rock being formed from water (Neptunism). Of the volcanoes then known, all were near the water, hence the action of the sea upon the land was used to explain volcanism.

Interaction with religion and mythology

Pele's hair caught on a radio antenna mounted on the south rim of Pu`u `O`o, Hawai`i, July 22, 2005 Peleshair on antenna.jpg
Pele's hair caught on a radio antenna mounted on the south rim of Puʻu ʻŌʻō, Hawaiʻi, July 22, 2005

Tribal legends of volcanoes abound from the Pacific Ring of Fire and the Americas, usually invoking the forces of the supernatural or the divine to explain the violent outbursts of volcanoes. [22] Taranaki and Tongariro, according to Māori mythology, were lovers who fell in love with Pihanga, and a spiteful jealous fight ensued. Some Māori will not to this day live on the direct line between Tongariro and Taranaki for fear of the dispute flaring up again. [23] In the Hawaiian religion, Pele ( /ˈpl/ Pel-a; [ˈpɛlɛ] ) is the goddess of volcanoes and a popular figure in Hawaiian mythology. [24] Pele was used for various scientific terms as for Pele's hair, Pele's tears, and Limu o Pele (Pele's seaweed). A volcano on the Jovian moon Io is also named Pele. [25]

Saint Agatha is patron saint of Catania, close to mount Etna, and an important highly venerated (till today [26] ) example of virgin martyrs of Christian antiquity. [27] In 253 CE, one year after her violent death, the stilling of an eruption of Mt. Etna was attributed to her intercession. Catania was however nearly completely destroyed by the eruption of Mt. Etna in 1169, and over 15,000 of its inhabitants died. Nevertheless, the saint was invoked again for the 1669 Etna eruption and, for an outbreak that was endangering the town of Nicolosi in 1886. [28] The way the saint is invoked and dealt with in Italian folk religion, in a quid pro quo manner, or bargaining approach which is sometimes used in prayerful interactions with saints, has been related (in the tradition of James Frazer) to earlier pagan beliefs and practices. [29]

In 1660 the eruption of Vesuvius rained twinned pyroxene crystals and ash upon the nearby villages. The crystals resembled the crucifix and this was interpreted as the work of Saint Januarius. In Naples, the relics of St Januarius are paraded through town at every major eruption of Vesuvius. The register of these processions and the 1779 and 1794 diary of Father Antonio Piaggio allowed British diplomat and amateur naturalist Sir William Hamilton to provide a detailed chronology and description of Vesuvius' eruptions. [30]

Notable volcanologists

Spanish depiction of a volcanic eruption in Guatemala, 1775. 1775 volcan Pacaya Guatemala.jpg
Spanish depiction of a volcanic eruption in Guatemala, 1775.

See also

Related Research Articles

<span class="mw-page-title-main">Volcano</span> Rupture in a planets crust where material escapes

A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.

<span class="mw-page-title-main">Mount Vesuvius</span> Active stratovolcano in the Gulf of Naples, Italy

Mount Vesuvius is a somma-stratovolcano located on the Gulf of Naples in Campania, Italy, about 9 km (5.6 mi) east of Naples and a short distance from the shore. It is one of several volcanoes forming the Campanian volcanic arc. Vesuvius consists of a large cone partially encircled by the steep rim of a summit caldera, resulting from the collapse of an earlier, much higher structure.

<span class="mw-page-title-main">Stratovolcano</span> Type of conical volcano composed of layers of lava and tephra

A stratovolcano, also known as a composite volcano, is a conical volcano built up by many layers (strata) of hardened lava and tephra. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and periodic intervals of explosive eruptions and effusive eruptions, although some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and hardens before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high to intermediate levels of silica, with lesser amounts of less viscous mafic magma. Extensive felsic lava flows are uncommon, but have traveled as far as 15 km (9 mi).

<span class="mw-page-title-main">Volcanologist</span> Scientist who studies volcanoes

A volcanologist, or volcano scientist, is a geologist who focuses on understanding the formation and eruptive activity of volcanoes. Volcanologists frequently visit volcanoes, sometimes active ones, to observe and monitor volcanic eruptions, collect eruptive products including tephra, rock and lava samples. One major focus of inquiry in recent times is the prediction of eruptions to alleviate the impact on surrounding populations and monitor natural hazards associated with volcanic activity. Geologists who research volcanic materials that make up the solid Earth are referred to as igneous petrologists.

<span class="mw-page-title-main">Tephra</span> Fragmental material produced by a volcanic eruption

Tephra is fragmental material produced by a volcanic eruption regardless of composition, fragment size, or emplacement mechanism.

<span class="mw-page-title-main">Mount Pinatubo</span> Active stratovolcano in the Philippines

Mount Pinatubo is an active stratovolcano in the Zambales Mountains, located on the tripoint boundary of the Philippine provinces of Zambales, Tarlac and Pampanga, all in Central Luzon on the northern island of Luzon. Its eruptive history was unknown to most before the pre-eruption volcanic activity of early 1991. Pinatubo was heavily eroded and obscured from view by dense forests which supported a population of several thousand indigenous Aetas.

<span class="mw-page-title-main">Volcanism of Iceland</span>

Iceland experiences frequent volcanic activity, due to its location both on the Mid-Atlantic Ridge, a divergent tectonic plate boundary, and being over a hot spot. Nearly thirty volcanoes are known to have erupted in the Holocene epoch; these include Eldgjá, source of the largest lava eruption in human history. Some of the various eruptions of lava, gas and ash have been both destructive of property and deadly to life over the years, as well as disruptive to local and European air travel.

<span class="mw-page-title-main">Eyjafjallajökull</span> Glacier and volcano in Iceland

Eyjafjallajökull, sometimes referred to by the numeronym E15, is one of the smaller ice caps of Iceland, north of Skógar and west of Mýrdalsjökull. The ice cap covers the caldera of a volcano with a summit elevation of 1,651 metres (5,417 ft). The volcano has erupted relatively frequently since the Last Glacial Period, most recently in 2010, when, although relatively small for a volcanic eruption, it caused enormous disruption to air travel across northern and western Europe for a week.

<span class="mw-page-title-main">Plinian eruption</span> Type of volcanic eruption

Plinian eruptions or Vesuvian eruptions are volcanic eruptions marked by their similarity to the eruption of Mount Vesuvius in 79 AD, which destroyed the ancient Roman cities of Herculaneum and Pompeii. The eruption was described in a letter written by Pliny the Younger, after the death of his uncle Pliny the Elder.

<span class="mw-page-title-main">Eruption column</span> A cloud of hot ash and volcanic gases emitted during an explosive volcanic eruption

An eruption column or eruption plume is a cloud of super-heated ash and tephra suspended in gases emitted during an explosive volcanic eruption. The volcanic materials form a vertical column or plume that may rise many kilometers into the air above the vent of the volcano. In the most explosive eruptions, the eruption column may rise over 40 km (25 mi), penetrating the stratosphere. Stratospheric injection of aerosols by volcanoes is a major cause of short-term climate change.

<span class="mw-page-title-main">Strombolian eruption</span> Type of volcanic eruption with relatively mild explosive intensity

In volcanology, a Strombolian eruption is a type of volcanic eruption with relatively mild blasts, typically having a Volcanic Explosivity Index of 1 or 2. Strombolian eruptions consist of ejection of incandescent cinders, lapilli, and volcanic bombs, to altitudes of tens to a few hundreds of metres. The eruptions are small to medium in volume, with sporadic violence. This type of eruption is named for the Italian volcano Stromboli.

<span class="mw-page-title-main">Volcanic gas</span> Gases given off by active volcanoes

Volcanic gases are gases given off by active volcanoes. These include gases trapped in cavities (vesicles) in volcanic rocks, dissolved or dissociated gases in magma and lava, or gases emanating from lava, from volcanic craters or vents. Volcanic gases can also be emitted through groundwater heated by volcanic action.

<span class="mw-page-title-main">Prediction of volcanic activity</span> Research to predict volcanic activity

Prediction of volcanic activity, or volcanic eruption forecasting, is an interdisciplinary monitoring and research effort to predict the time and severity of a volcano's eruption. Of particular importance is the prediction of hazardous eruptions that could lead to catastrophic loss of life, property, and disruption of human activities.

<span class="mw-page-title-main">Types of volcanic eruptions</span> Overview of different types of volcanic eruptions

Several types of volcanic eruptions—during which material is expelled from a volcanic vent or fissure—have been distinguished by volcanologists. These are often named after famous volcanoes where that type of behavior has been observed. Some volcanoes may exhibit only one characteristic type of eruption during a period of activity, while others may display an entire sequence of types all in one eruptive series.

<span class="mw-page-title-main">Phreatomagmatic eruption</span> Volcanic eruption involving both steam and magma

Phreatomagmatic eruptions are volcanic eruptions resulting from interaction between magma and water. They differ from exclusively magmatic eruptions and phreatic eruptions. Unlike phreatic eruptions, the products of phreatomagmatic eruptions contain juvenile (magmatic) clasts. It is common for a large explosive eruption to have magmatic and phreatomagmatic components.

<span class="mw-page-title-main">Volcanic lightning</span> Lightning produced by a volcanic eruption

Volcanic lightning is an electrical discharge caused by a volcanic eruption rather than from an ordinary thunderstorm. Volcanic lightning arises from colliding, fragmenting particles of volcanic ash, which generate static electricity within the volcanic plume, leading to the name dirty thunderstorm. Moist convection currents and ice formation also drive the eruption plume dynamics and can trigger volcanic lightning. Unlike ordinary thunderstorms, volcanic lightning can also occur when there are no ice crystals in the ash cloud.

<span class="mw-page-title-main">Timeline of volcanism on Earth</span>

This timeline of volcanism on Earth includes a list of major volcanic eruptions of approximately at least magnitude 6 on the Volcanic explosivity index (VEI) or equivalent sulfur dioxide emission during the Quaternary period. Other volcanic eruptions are also listed.

<span class="mw-page-title-main">Volcanic hazard</span> Probability of a volcanic eruption or related geophysical event

A volcanic hazard is the probability a volcanic eruption or related geophysical event will occur in a given geographic area and within a specified window of time. The risk that can be associated with a volcanic hazard depends on the proximity and vulnerability of an asset or a population of people near to where a volcanic event might occur.

<span class="mw-page-title-main">2010 eruptions of Eyjafjallajökull</span> Volcanic events in Iceland

Between March and June 2010 a series of volcanic events at Eyjafjallajökull in Iceland caused enormous disruption to air travel across Western Europe.

<span class="mw-page-title-main">946 eruption of Paektu Mountain</span> Major volcanic eruption in Korea

The 946 eruption of Paektu Mountain in Korea and China, also known as the Millennium Eruption or Tianchi eruption, was one of the most powerful volcanic eruptions in recorded history and is classified as a VEI-6 event. The eruption resulted in a brief period of significant climate change in Manchuria. The eruption occurred in late 946 CE.

References

  1. Vulcani attivi Archived 2018-03-22 at the Wayback Machine , INGV, accessed 29 August 2016.
  2. Becquerel, Henri (1896). "Sur les radiations invisibles émises par les corps phosphorescents". Comptes Rendus. 122: 501–503.
  3. 1 2 3 Robert Decker and Barbara Decker, Volcanoes, 4th ed., W. H. Freeman, 2005, ISBN   0-7167-8929-9
  4. Bartel, B., 2002. Magma dynamics at Taal Volcano, Philippines from continuous GPS measurements. Master's Thesis, Department of Geological Sciences, Indiana University, Bloomington, Indiana
  5. 1 2 Peter Francis and Clive Oppenheimer, Volcanoes, Oxford University Press, USA 2003, 2nd ed., ISBN   0-19-925469-9
  6. "Archive: NASA Observes Ash Plume of Icelandic Volcano". NASA.
  7. "NASA ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), Volcanology". Archived from the original on 2010-05-28. Retrieved 2010-09-03.
  8. Budd, David A.; Troll, Valentin R.; Dahren, Börje; Burchardt, Steffi (2016). "Persistent multitiered magma plumbing beneath Katla volcano, Iceland". Geochemistry, Geophysics, Geosystems. 17 (3): 966–980. Bibcode:2016GGG....17..966B. doi: 10.1002/2015GC006118 . ISSN   1525-2027.
  9. 1 2 3 4 Davidson, J.P.; Morgan, D.J.; Charlier, B.L.A.; Harlou, R.; Hora, J.M. (2007). "Microsampling and Isotopic Analysis of Igneous Rocks: Implications for the Study of Magmatic Systems". Annual Review of Earth and Planetary Sciences. 35 (1): 273–311. doi:10.1146/annurev.earth.35.031306.140211.
  10. Davies, D.; Rawlinson, N.; Iaffaldano, G.; Campbell, I.H. (2015). "Lithospheric controls on magma composition along Earth's longest continental hotspot track". Nature. 525: 511–514. doi:10.1038/nature14903.
  11. Lowe, D. J.; Pearce, N. J. G.; Jorgensen, M. A.; Kuehn, S. C.; Tryon, C. A.; Hayward, C. L. (2017). "Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: Review and evaluation". Quaternary Science Reviews. 175: 1–44. doi:10.1016/j.quascirev.2017.08.003. hdl: 10289/11352 .
  12. Halldórsson, S.A.; Marshall, E.W.; Caracciolo, A.; Matthews, S.; Bali, E.; Rasmussen, M.B.; Ranta, E.; Robin, J.G.; Guðfinnsson, G.H.; Sigmarsson, O.; Maclennan, J (2022). "Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland". Nature. 609 (7927): 529–534. doi: 10.1038/s41586-022-04981-x . hdl: 10447/576270 .:Main
  13. 1 2 3 Bebbington, M.S.; Jenkins, S.F. (2019). "Intra-eruption forecasting". Bulletin of Volcanology. 81 (34): 1–17. doi:10.1007/s00445-019-1294-9. hdl: 10356/137220 .
  14. Pappas, Stephanie (15 June 2011). "Pinatubo: Why the Biggest Volcanic Eruption Wasn't the Deadliest". LiveScience. Archived from the original on 19 July 2022. Retrieved 17 January 2023.
  15. Chester, DK; Duncan, AM (2007). "Geomythology, theodicy, and the continuing relevance of religious worldviews on responses to volcanic eruptions" (PDF). In Grattan, J; Torrence, R (eds.). Living under the shadow: The cultural impacts of volcanic eruptions. Walnut Creek: Left Coast. pp. 203–24. ISBN   9781315425177.
  16. Meece, Stephanie, (2006)A bird’s eye view - of a leopard’s spots. The Çatalhöyük ‘map’ and the development of cartographic representation in prehistory Anatolian Studies 56:1-16. See http://www.dspace.cam.ac.uk/handle/1810/195777
  17. Ülkekul, Cevat, (2005)Çatalhöyük Şehir Plani: Town Plan of Çatalhöyük Dönence, Istanbul.
  18. Thomaidis, K; Troll, VR; Deegan, FM; Freda, C; Corsaro, RA; Behncke, B; Rafailidis, S (2021). "A message from the 'underground forge of the gods': History and current eruptions at Mt Etna" (PDF). Geology Today. 37 (4): 141–9. doi:10.1111/gto.12362.
  19. 1 2 Sigurdsson, H; Houghton, B; Rymer, H; Stix, J; McNutt, S (2000). "The history of volcanology". Encyclopedia of volcanoes. Academic Press. pp. 15–37. ISBN   9780123859396.
  20. Major, RH (1939). "Athanasius Kircher" (PDF). Annals of Medical History. 1 (2): 105-20. Retrieved 11 November 2023.
  21. Williams, Micheal (November 2007). "Hearts of fire". Morning Calm (11–2007): 6.
  22. Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Budd, David A.; Dahren, Börje; Schwarzkopf, Lothar M. (2015-03-01). "Ancient oral tradition describes volcano–earthquake interaction at merapi volcano, indonesia". Geografiska Annaler: Series A, Physical Geography. 97 (1): 137–166. doi:10.1111/geoa.12099. ISSN   0435-3676. S2CID   129186824.
  23. Ngāwhare-Pounamu, D. "Living Memory and the Travelling Mountain Narrative of Taranaki" (PDF). Retrieved 12 November 2023.
  24. H. Arlo Nimmo (2011). Pele, Volcano Goddess of Hawai'i: A History. McFarland. p. 208. ISBN   978-0-7864-6347-3.
  25. Radebaugh, J.; et al. (2004). "Observations and temperatures of Io's Pele Patera from Cassini and Galileo spacecraft images". Icarus. 169 (1): 65–79. Bibcode:2004Icar..169...65R. doi:10.1016/j.icarus.2003.10.019.
  26. Foley O.F.M., Leonard. Saint of the Day, (revised by Pat McCloskey O.F.M.), Franciscan Media ISBN   978-0-86716-887-7
  27. Kirsch, Johann Peter. "St. Agatha." The Catholic Encyclopedia. Vol. 1. New York: Robert Appleton Company, 1907. 25 April 2013
  28. Volcanoes: Crucibles of Change Richard V. Fisher, Grant Heiken, Jeffrey B. Hulen Princeton University Press, 1998
  29. Festa: Recipes and Recollections of Italian Holidays Helen Barolini Univ of Wisconsin Press, 2002
  30. The Lure of Volcanoes James Hamilton History Today Volume 60 Issue 7 July 2010