WikiMili The Free Encyclopedia

**Geophysical survey** is the systematic collection of geophysical data for spatial studies. Detection and analysis of the geophysical signals forms the core of Geophysical signal processing. The magnetic and gravitational fields emanating from the Earth's interior hold essential information concerning seismic activities and the internal structure. Hence, detection and analysis of the electric and Magnetic fields is very crucial. As the Electromagnetic and gravitational waves are multi-dimensional signals, all the 1-D transformation techniques can be extended for the analysis of these signals as well. Hence this article also discusses multi-dimensional signal processing techniques.

**Geophysics** is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term *geophysics* sometimes refers only to the geological applications: Earth's shape; its gravitational and magnetic fields; its internal structure and composition; its dynamics and their surface expression in plate tectonics, the generation of magmas, volcanism and rock formation. However, modern geophysics organizations use a broader definition that includes the water cycle including snow and ice; fluid dynamics of the oceans and the atmosphere; electricity and magnetism in the ionosphere and magnetosphere and solar-terrestrial relations; and analogous problems associated with the Moon and other planets.

- Types of geophysical survey
- Geophysical signal detection
- Measurement of Earth’s magnetic fields
- Seismic wave measurement using gravitational wave sensor
- Measurement of seismic waves using atom interferometer
- Existing approaches in geophysical signal recognition
- 3D sampling
- Spectrum analysis
- Classical estimation theory
- Applications
- Estimating positions of underground objects
- Array processing for seismographic applications
- Visualization of 3D data
- References

Geophysical surveys may use a great variety of sensing instruments, and data may be collected from above or below the Earth's surface or from aerial, orbital, or marine platforms. Geophysical surveys have many applications in geology, archaeology, mineral and energy exploration, oceanography, and engineering. Geophysical surveys are used in industry as well as for academic research.

**Geology** is an earth science concerned with the solid Earth, the rocks of which it is composed, and the processes by which they change over time. Geology can also include the study of the solid features of any terrestrial planet or natural satellite such as Mars or the Moon. Modern geology significantly overlaps all other earth sciences, including hydrology and the atmospheric sciences, and so is treated as one major aspect of integrated earth system science and planetary science.

**Archaeology**, or **archeology**, is the study of human activity through the recovery and analysis of material culture. The archaeological record consists of artifacts, architecture, biofacts or ecofacts and cultural landscapes. Archaeology can be considered both a social science and a branch of the humanities. In North America archaeology is a sub-field of anthropology, while in Europe it is often viewed as either a discipline in its own right or a sub-field of other disciplines.

**Exploration geophysics** is an applied branch of geophysics and economic geology, which uses physical methods, such as seismic, gravitational, magnetic, electrical and electromagnetic at the surface of the Earth to measure the physical properties of the subsurface, along with the anomalies in those properties. It is most often used to detect or infer the presence and position of economically useful geological deposits, such as ore minerals; fossil fuels and other hydrocarbons; geothermal reservoirs; and groundwater reservoirs.

The sensing instruments such as gravimeter, gravitational wave sensor and magnetometers detect fluctuations in the gravitational and magnetic field. The data collected from a geophysical survey is analysed to draw meaningful conclusions out of that. Analysing the spectral density and the time-frequency localisation of any signal is important in applications such as oil exploration and seismography.

A **gravimeter** is an instrument used to measure gravitational acceleration. Every mass has an associated gravitational potential. The gradient of this potential is a force. A gravimeter measures this gravitational force.

A **magnetometer** is a device that measures magnetism—the direction, strength, or relative change of a magnetic field at a particular location. The measurement of the magnetization of a magnetic material is an example. A compass is one such device, one that measures the direction of an ambient magnetic field, in this case, the Earth's magnetic field.

There are many methods and types of instruments used in geophysical surveys. Technologies used for geophysical surveys include:^{ [1] }

- Seismic methods, such as reflection seismology, seismic refraction, and seismic tomography.
- Seismoelectrical method
- Geodesy and gravity techniques, including gravimetry and gravity gradiometry.
- Magnetic techniques, including aeromagnetic surveys and magnetometers.
- Electrical techniques, including electrical resistivity tomography, induced polarization, spontaneous potential and marine control source electromagnetic (mCSEM) or EM seabed logging.
^{ [2] } - Electromagnetic methods, such as magnetotellurics, ground penetrating radar and transient/time-domain electromagnetics, surface nuclear magnetic resonance (also known as magnetic resonance sounding).
^{ [3] } - Borehole geophysics, also called well logging.
- Remote sensing techniques, including hyperspectral.

This section deals with the principles behind measurement of geophysical waves. The magnetic and gravitational fields are important components of geophysical signals.

The instrument used to measure the change in gravitational field is the gravimeter. This meter measures the variation in the gravity due to the subsurface formations and deposits. To measure the changes in magnetic field the magnetometer is used. There are two types of magnetometers, one that measures only vertical component of the magnetic field and the other measures total magnetic field.

Magnetometers are used to measure the magnetic fields, magnetic anomalies in the earth. The sensitivity of magnetometers depends upon the requirement. For example, the variations in the geomagnetic fields can be to the order of several aT where 1aT = 10^{−18}T . In such cases, specialized magnetometers such as the superconducting quantum interference device (SQUID) are used.

Jim Zimmerman co-developed the rf superconducting quantum interference device (SQUID) during his tenure at Ford research lab.^{ [4] } However, events leading to the invention of the SQUID were in fact, serendipitous. John Lambe,^{ [4] } during his experiments on [[nuclear magnetic resonance noticed that the electrical properties of indium varied due to a change in the magnetic field of the order of few nT. However, Lambe was not able to fully recognize the utility of SQUID.

SQUIDs have the capability to detect magnetic fields of extremely low magnitude. This is due to the virtue of the Josephson junction. Jim Zimmerman pioneered the development of SQUID by proposing a new approach to making the Josephson junctions. He made use of niobium wires and niobium ribbons to form two Josephson junctions connected in parallel. The ribbons act as the interruptions to the superconducting current flowing through the wires. The junctions are very sensitive to the magnetic fields and hence are very useful in measuring fields of the order of 10^{^-18}T.

Gravitational wave sensors can detect even a minute change in the gravitational fields due to the influence of heavier bodies. Large seismic waves can interfere with the gravitational waves and may cause shifts in the atoms. Hence, the magnitude of seismic waves can be detected by a relative shift in the gravitational waves.^{ [5] }

The motion of any mass is affected by the gravitational field.^{ [6] } The motion of planets is affected by the Sun's enormous gravitational field. Likewise, a heavier object will influence the motion of other objects of smaller mass in its vicinity. However, this change in the motion is very small compared to the motion of heavenly bodies. Hence, special instruments are required to measure such a minute change.

Atom interferometers work on the principle of diffraction. The diffraction gratings are nano fabricated materials with a separation of a quarter wavelength of light. When a beam of atoms pass through a diffraction grating, due the inherent wave nature of atoms, they split and form interference fringes on the screen. An atom interferometer is very sensitive to the changes in the positions of atoms.As heavier objects shifts the position of the atoms nearby, displacement of the atoms can be measured by detecting a shift in the interference fringes.

This section addresses the methods and mathematical techniques behind signal recognition and signal analysis. It considers the time domain and frequency domain analysis of signals. This section also discusses various transforms and their usefulness in the analysis of multi-dimensional waves.

The first step in any signal processing approach is analog to digital conversion. The geophysical signals in the analog domain has to be converted to digital domain for further processing. Most of the filters are available in 1D as well as 2D.

As the name suggests, the gravitational and electromagnetic waves in the analog domain are detected, sampled and stored for further analysis. The signals can be sampled in both time and frequency domains. The signal component is measured at both intervals of time and space. Ex, time-domain sampling refers to measuring a signal component at several instances of time. Similarly, spatial-sampling refers to measuring the signal at different locations in space.

Traditional sampling of 1D time varying signals is performed by measuring the amplitude of the signal under consideration in discrete intervals of time. Similarly sampling of space-time signals (signals which are functions of 4 variables – 3D space and time), is performed by measuring the amplitude of the signals at different time instances and different locations in the space. For example, the earth's gravitational data is measured with the help of gravitational wave sensor or gradiometer^{ [7] } by placing it in different locations at different instances of time.

The Fourier expansion of a time domain signal is the representation of the signal as a sum of its frequency components, specifically sum of sines and cosines. Joseph Fourier came up with the Fourier representation to estimate the heat distribution of a body. The same approach can be followed to analyse the multi-dimensional signals such as gravitational waves and electromagnetic waves.

The 4D Fourier representation of such signals is given by

*ω*represents temporal frequency and*k*represents spatial frequency.*s*(*x*,*t*) is a 4-dimensional space-time signal which can be imagined as travelling plane waves. For such plane waves, the plane of propagation is perpendicular to the direction of propagation of the considered wave.^{ [8] }

The motivation for development of the Wavelet transform was the Short-time Fourier transform.The signal to be analysed, say *f*(*t*) is multiplied with a window function *w*(*t*) at a particular time instant. Analysing the Fourier coefficients of this signal gives us information about the frequency components of the signal at a particular time instant.^{ [9] }

The STFT is mathematically written as:

The Wavelet transform is defined as

A variety of window functions can be used for analysis. Wavelet functions are used for both time and frequency localisation. For example,one of the windows used in calculating the Fourier coefficients is the Gaussian window which is optimally concentrated in time and frequency. This optimal nature can be explained by considering the time scaling and time shifting parameters *a* and *b* respectively. By choosing the appropriate values of *a* and *b*, we can determine the frequencies and the time associated with that signal. By representing any signal as the linear combination of the wavelet functions, we can localize the signals in both time and frequency domain. Hence wavelet transforms are important in geophysical applications where spatial and temporal frequency localisation is important.^{ [10] }

**Time frequency localisation using wavelets**

Geophysical signals are continuously varying functions of space and time. The wavelet transform techniques offer a way to decompose the signals as a linear combination of shifted and scaled version of basis functions. The amount of "shift" and "scale" can be modified to localize the signal in time and frequency.

Simply put, space-time signal filtering problem^{ [11] } can be thought as localizing the speed and direction of a particular signal.^{ [12] } The design of filters for space-time signals follows a similar approach as that of 1D signals. The filters for 1-D signals are designed in such a way that if the requirement of the filter is to extract frequency components in a particular non-zero range of frequencies, a bandpass filter with appropriate passband and stop band frequencies in determined. Similarly, in the case of multi-dimensional systems, the wavenumber-frequency response of filters is designed in such a way that it is unity in the designed region of (*k*, *ω*) a.k.a. wavenumber – frequency and zero elsewhere.^{ [12] }

This approach is applied for filtering space-time signals.^{ [12] } It is designed to isolate signals travelling in a particular direction. One of the simplest filters is weighted delay and sum beamformer. The output is the average of the linear combination of delayed signals. In other words, the beamformer output is formed by averaging weighted and delayed versions of receiver signals. The delay is chosen such that the passband of beamformer is directed to a specific direction in the space.^{ [12] }

This section deals with the estimation of the power spectral density of the multi-dimensional signals.The spectral density function can be defined as a multidimensional Fourier transform of the autocorrelation function of the random signal.^{ [13] }

The spectral estimates can be obtained by finding the square of the magnitude of the Fourier transform also called as Periodogram. The spectral estimates obtained from the periodogram have a large variance in amplitude for consecutive periodogram samples or in wavenumber. This problem is resolved using techniques that constitute the classical estimation theory. They are as follows:

1.Bartlett suggested a method that averages the spectral estimates to calculate the power spectrum. Average of spectral estimates over a time interval gives a better estimate.^{ [14] }

- Bartlett's case
^{ [13] }

2.Welch's method suggested to divide the measurements using data window functions, calculate a periodogram, average them to get a spectral estimate and calculate the power spectrum using Fast Fourier Transform (FFT).This increased the computational speed.^{ [15] }

- Welch's case
^{ [13] }

4.The periodogram under consideration can be modified by multiplying it with a window function. Smoothing window will help us smoothen the estimate. Wider the main lobe of the smoothing spectrum, smoother it becomes at the cost of frequency resolution.^{ [13] }

- Modified periodogram
^{ [13] }

For further details on spectral estimation, please refer Spectral Analysis of Multi-dimensional signals

The method being discussed here assumes that the mass distribution of the underground objects of interest is already known and hence the problem of estimating their location boils down to parametric localisation.Say underground objects with center of masses (CM_{1}, CM_{2}...CM_{n}) are located under the surface and at positions p_{1}, p_{2}...p_{n}. The gravity gradient(components of the gravity field) is measured using a spinning wheel with accelerometers also called as the gravity gradiometer.^{ [7] } The instrument is positioned in different orientations to measure the respective component of the gravitational field. The values of gravitational gradient tensors are calculated and analyzed. The analysis includes observing the contribution of each object under consideration. A maximum likelihood procedure is followed and Cramér–Rao bound (CRB) is computed to assess the quality of location estimate.

Various sensors located on the surface of earth spaced equidistantly receive the seismic waves. The seismic waves travel through the various layers of earth and undergo changes in their properties - amplitude change, time of arrival, phase shift. By analyzing these properties of the signals, we can model the activities inside the earth.

The method of volume rendering is an important tool to analyse the scalar fields. Volume rendering simplifies representation of 3D space. Every point in a 3D space is called a voxel. Data inside the 3-d dataset is projected to the 2-d space(display screen) using various techniques. Different data encoding schemes exist for various applications such as MRI, Seismic applications.

**Digital signal processing** (**DSP**) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency.

In mathematics, **Fourier analysis** is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer.

A **wavelet** is a wave-like oscillation with an amplitude that begins at zero, increases, and then decreases back to zero. It can typically be visualized as a "brief oscillation" like one recorded by a seismograph or heart monitor. Generally, wavelets are intentionally crafted to have specific properties that make them useful for signal processing. Using a "reverse, shift, multiply and integrate" technique called convolution, wavelets can be combined with known portions of a damaged signal to extract information from the unknown portions.

The **Fourier transform** (**FT**) decomposes a function of time into its constituent frequencies. This is similar to the way a musical chord can be expressed in terms of the volumes and frequencies of its constituent notes. The term *Fourier transform* refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of time. The Fourier transform of a function of time is itself a complex-valued function of frequency, whose magnitude (modulus) represents the amount of that frequency present in the original function, and whose argument is the phase offset of the basic sinusoid in that frequency. The Fourier transform is not limited to functions of time, but the domain of the original function is commonly referred to as the *time domain*. There is also an *inverse Fourier transform* that mathematically synthesizes the original function from its frequency domain representation.

The power spectrum of a time series describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, or a spectrum of frequencies over a continuous range. The statistical average of a certain signal or sort of signal as analyzed in terms of its frequency content, is called its spectrum.

In electronics, control systems engineering, and statistics, the **frequency domain** refers to the analysis of mathematical functions or signals with respect to frequency, rather than time. Put simply, a time-domain graph shows how a signal changes over time, whereas a frequency-domain graph shows how much of the signal lies within each given frequency band over a range of frequencies. A frequency-domain representation can also include information on the phase shift that must be applied to each sinusoid in order to be able to recombine the frequency components to recover the original time signal.

In signal processing, a **periodogram** is an estimate of the spectral density of a signal. The term was coined by Arthur Schuster in 1898. Today, the periodogram is a component of more sophisticated methods. It is the most common tool for examining the amplitude vs frequency characteristics of FIR filters and window functions. FFT spectrum analyzers are also implemented as a time-sequence of periodograms.

In mathematics, the **continuous wavelet transform** (CWT) is a formal tool that provides an overcomplete representation of a signal by letting the translation and scale parameter of the wavelets vary continuously.

In numerical analysis and functional analysis, a **discrete wavelet transform** (**DWT**) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency *and* location information.

In signal processing, **time–frequency analysis** comprises those techniques that study a signal in both the time and frequency domains *simultaneously,* using various time–frequency representations. Rather than viewing a 1-dimensional signal and some transform, time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform.

**S****transform** as a time–frequency distribution was developed in 1994 for analyzing geophysics data. In this way, the *S* transform is a generalization of the short-time Fourier transform (STFT), extending the continuous wavelet transform and overcoming some of its disadvantages. For one, modulation sinusoids are fixed with respect to the time axis; this localizes the scalable Gaussian window dilations and translations in *S* transform. Moreover, the *S* transform doesn't have a cross-term problem and yields a better signal clarity than Gabor transform. However, the *S* transform has its own disadvantages: the clarity is worse than Wigner distribution function and Cohen's class distribution function.

In mathematics, a **wavelet series** is a representation of a square-integrable function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an **orthonormal wavelet** and of the **integral wavelet transform**.

In mathematics and signal processing, the **constant-Q transform** transforms a data series to the frequency domain. It is related to the Fourier transform and very closely related to the complex Morlet wavelet transform.

In statistical signal processing, the goal of **spectral density estimation** (**SDE**) is to estimate the spectral density of a random signal from a sequence of time samples of the signal. Intuitively speaking, the spectral density characterizes the frequency content of the signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities.

**Least-squares spectral analysis (LSSA)** is a method of estimating a frequency spectrum, based on a least squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in long gapped records; LSSA mitigates such problems.

**Fractional wavelet transform** (FRWT) is a generalization of the classical wavelet transform (WT). This transform is proposed in order to rectify the limitations of the WT and the fractional Fourier transform (FRFT). The FRWT inherits the advantages of multiresolution analysis of the WT and has the capability of signal representations in the fractional domain which is similar to the FRFT.

Power spectral estimation forms the basis for distinguishing and tracking signals in the presence of noise and extracting information from available data. One dimensional signals are expressed in terms of a single domain while multidimensional signals are represented in wave vector and frequency spectrum. Therefore, spectral estimation in the case of multidimensional signals gets a bit tricky.

**Geophysical signal analysis** is concerned with the detection and a subsequent processing of signals. Any signal which is varying conveys valuable information. Hence to understand the information embedded in such signals, we need to 'detect' and 'extract data' from such quantities. Geophysical signals are of extreme importance to us as they are information bearing signals which carry data related to petroleum deposits beneath the surface and seismic data. Analysis of geophysical signals also offers us a qualitative insight into the possibility of occurrence of a natural calamity such as earthquakes or volcanic eruptions.

**Multidimensional seismic data processing** forms a major component of seismic profiling, a technique used in geophysical exploration. The technique itself has various applications, including mapping ocean floors, determining the structure of sediments, mapping subsurface currents and hydrocarbon exploration. Since geophysical data obtained in such techniques is a function of both space and time, multidimensional signal processing techniques may be better suited for processing such data.

In statistics, **Whittle likelihood** is an approximation to the likelihood function of a stationary Gaussian time series. It is named after the mathematician and statistician Peter Whittle, who introduced it in his PhD thesis in 1951. It is commonly utilized in time series analysis and signal processing for parameter estimation and signal detection.

- ↑ Mussett, A. E.; Khan, M. Aftab (2000).
*Looking into the earth : an introduction to geological geophysics*. Cambridge: Cambridge University Press. ISBN 9780521785747. - ↑ Stéphane Sainson,
*Electromagnetic seabed logging, A new tool for geoscientists*. Ed. Springer, 2017 - ↑ "Magnetic Resonance Sounding (MRS)".
*USGS Groundwater Information: Hydrogeophysics Branch*. United States Geological Survey. Retrieved 15 May 2018. - 1 2 Kautz, R.L. (2001-03-01). "Jim Zimmerman and the SQUID" (PDF).
*IEEE Transactions on Applied Superconductivity*.**11**(1): 1026–1031. Bibcode:2001ITAS...11.1026K. doi:10.1109/77.919524. - ↑ Chiba, J.; Obata, Tsunehiro (1992-10-01).
*Gravitational field sensor for prediction of big seismic waves*.*Institute of Electrical and Electronics Engineers 1992 International Carnahan Conference on Security Technology, 1992. Crime Countermeasures, Proceedings*. pp. 218–224. doi:10.1109/CCST.1992.253730. ISBN 978-0-7803-0568-7. - ↑ Parker, Ann. "Gravity Detector Applies Outside-the-Box Thinking to Show What's Inside the Box".
*Science & Technology Review*. Lawrence Livermore National Laboratory. Retrieved 15 May 2018. - 1 2 E.H. Metzger, "Development Experience of Gravity Gradiometer System", IEEE Plans Meeting, 1982
- ↑ Kelly, Jr., E. J. (6 March 1964). The representation of seismic waves in frequency-wave number space (PDF) (Report). Defense Technical Information Center. AD0433611. Retrieved 15 May 2018.
- ↑ Daubechies, I. (1990-09-01). "The wavelet transform, time-frequency localization and signal analysis".
*IEEE Transactions on Information Theory*.**36**(5): 961–1005. Bibcode:1990ITIT...36..961D. doi:10.1109/18.57199. - ↑ Daubechies, I (1996). "Where do wavelets come from? A personal point of view".
*Proceedings of the IEEE*.**84**(4): 510–513. doi:10.1109/5.488696. - ↑ Halpeny, O. S.; Childers, Donald G. (1975-06-01). "Composite wavefront decomposition via multidimensional digital filtering of array data".
*IEEE Transactions on Circuits and Systems*.**22**(6): 552–563. Bibcode:1975ITCS...22..552H. doi:10.1109/TCS.1975.1084081. - 1 2 3 4 Dan E. Dudgeon, Russell M. Mersereau, “Multidimensional Digital Signal Processing”, Prentice-Hall Signal Processing Series, ISBN 0136049591,pp. 291-294, 1983.
- 1 2 3 4 5 Dan E. Dudgeon, Russell M. Mersereau, “Multidimensional Digital Signal Processing”, Prentice-Hall Signal Processing Series, ISBN 0136049591,pp. 315-338, 1983
- ↑ Bartlett, M. S.,"An introduction to stochastic processes, with special reference to methods and applications, CUP Archive, 1978, ISBN 0521215854, doi : 10.1109/ATC.2010.5672752
- ↑ J.D Welch (1967). "The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms".
*IEEE Transactions on Audio and Electroacoustics*.**15**(2): 70–73. Bibcode:1967ITAE...15...70W. doi:10.1109/TAU.1967.1161901.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.