Last updated

Magnetic stripes are the result of reversals of the Earth's field and seafloor spreading. New oceanic crust is magnetized as it forms and then it moves away from the ridge in both directions. The models show a ridge (a) about 5 million years ago (b) about 2 to 3 million years ago and (c) in the present. Oceanic.Stripe.Magnetic.Anomalies.Scheme.svg
Magnetic stripes are the result of reversals of the Earth's field and seafloor spreading. New oceanic crust is magnetized as it forms and then it moves away from the ridge in both directions. The models show a ridge (a) about 5 million years ago (b) about 2 to 3 million years ago and (c) in the present.

Paleomagnetism (or palaeomagnetism in the United Kingdom) is the study of the record of the Earth's magnetic field in rocks, sediment, or archeological materials. Certain minerals in rocks lock-in a record of the direction and intensity of the magnetic field when they form. This record provides information on the past behavior of Earth's magnetic field and the past location of tectonic plates. The record of geomagnetic reversals preserved in volcanic and sedimentary rock sequences (magnetostratigraphy) provides a time-scale that is used as a geochronologic tool. Geophysicists who specialize in paleomagnetism are called paleomagnetists.


Paleomagnetists led the revival of the continental drift hypothesis and its transformation into plate tectonics. Apparent polar wander paths provided the first clear geophysical evidence for continental drift, while marine magnetic anomalies did the same for seafloor spreading. Paleomagnetism continues to extend the history of plate tectonics back in time and are applied to the movement of continental fragments, or terranes.

Paleomagnetism relied heavily on new developments in rock magnetism, which in turn has provided the foundation for new applications of magnetism. These include biomagnetism, magnetic fabrics (used as strain indicators in rocks and soils), and environmental magnetism.


As early as the 18th century, it was noticed that compass needles deviated near strongly magnetized outcrops. In 1797, Von Humboldt attributed this magnetization to lightning strikes (and lightning strikes do often magnetize surface rocks). [2] [3] In the 19th century studies of the direction of magnetization in rocks showed that some recent lavas were magnetized parallel to the Earth's magnetic field. Early in the 20th century, work by David, Brunhes and Mercanton showed that many rocks were magnetized antiparallel to the field. Japanese geophysicist Motonori Matuyama showed that the Earth's magnetic field reversed in the mid-Quaternary, a reversal now known as the Brunhes-Matuyama reversal. [2]

The British physicist P.M.S. Blackett provided a major impetus to paleomagnetism by inventing a sensitive astatic magnetometer in 1956. His intent was to test his theory that the geomagnetic field was related to the Earth's rotation, a theory that he ultimately rejected; but the astatic magnetometer became the basic tool of paleomagnetism and led to a revival of the theory of continental drift. Alfred Wegener first proposed in 1915 that continents had once been joined together and had since moved apart. [4] Although he produced an abundance of circumstantial evidence, his theory met with little acceptance for two reasons: (1) no mechanism for continental drift was known, and (2) there was no way to reconstruct the movements of the continents over time. Keith Runcorn [5] and Edward A. Irving [6] constructed apparent polar wander paths for Europe and North America. These curves diverged, but could be reconciled if it was assumed that the continents had been in contact up to 200 million years ago. This provided the first clear geophysical evidence for continental drift. Then in 1963, Morley, Vine and Matthews showed that marine magnetic anomalies provided evidence for seafloor spreading.


Paleomagnetism is studied on a number of scales:

Earth's magnetic polarity reversals in last 5 million years. Dark regions represent normal polarity (same as present field); light regions represent reversed polarity. Geomagnetic late cenozoic.png
Earth's magnetic polarity reversals in last 5 million years. Dark regions represent normal polarity (same as present field); light regions represent reversed polarity.

Principles of remanent magnetization

The study of paleomagnetism is possible because iron-bearing minerals such as magnetite may record past directions of the Earth's magnetic field. Magnetic signatures in rocks can be recorded by several different mechanisms.

Thermoremanent magnetization

Iron-titanium oxide minerals in basalt and other igneous rocks may preserve the direction of the Earth's magnetic field when the rocks cool through the Curie temperatures of those minerals. The Curie temperature of magnetite, a spinel-group iron oxide, is about 580°C, whereas most basalt and gabbro are completely crystallized at temperatures below 900°C. Hence, the mineral grains are not rotated physically to align with the Earth's field, but rather they may record the orientation of that field. The record so preserved is called a thermoremanent magnetization (TRM). Because complex oxidation reactions may occur as igneous rocks cool after crystallization, the orientations of the Earth's magnetic field are not always accurately recorded, nor is the record necessarily maintained. Nonetheless, the record has been preserved well enough in basalts of the ocean crust to have been critical in the development of theories of sea floor spreading related to plate tectonics. TRM can also be recorded in pottery kilns, hearths, and burned adobe buildings. The discipline based on the study of thermoremanent magnetisation in archaeological materials is called archaeomagnetic dating. [7]

Detrital remanent magnetization

In a completely different process, magnetic grains in sediments may align with the magnetic field during or soon after deposition; this is known as detrital remanent magnetization (DRM). If the magnetization is acquired as the grains are deposited, the result is a depositional detrital remanent magnetization (dDRM); if it is acquired soon after deposition, it is a post-depositional detrital remanent magnetization (pDRM). [8]

Chemical remanent magnetization

In a third process, magnetic grains grow during chemical reactions, and record the direction of the magnetic field at the time of their formation. The field is said to be recorded by chemical remanent magnetization (CRM). A common form of chemical remanent magnetization is held by the mineral hematite, another iron oxide. Hematite forms through chemical oxidation reactions of other minerals in the rock including magnetite. Redbeds, clastic sedimentary rocks (such as sandstones) are red because of hematite that formed during sedimentary diagenesis. The CRM signatures in redbeds can be quite useful and they are common targets in magnetostratigraphy studies. [9]

Isothermal remanent magnetization

Remanence that is acquired at a fixed temperature is called isothermal remanent magnetization (IRM). Remanence of this sort is not useful for paleomagnetism, but it can be acquired as a result of lightning strikes. Lightning-induced remanent magnetization can be distinguished by its high intensity and rapid variation in direction over scales of centimeters. [10] [9]

IRM is often induced in drill cores by the magnetic field of the steel core barrel. This contaminant is generally parallel to the barrel, and most of it can be removed by heating up to about 400 ℃ or demagnetizing in a small alternating field.

In the laboratory, IRM is induced by applying fields of various strengths and is used for many purposes in rock magnetism.

Viscous remanent magnetization

Viscous remanent magnetization is remanence that is acquired by ferromagnetic materials by sitting in a magnetic field for some time.

Paleomagnetic procedure

Collecting samples on land

The oldest rocks on the ocean floor are 200 mya – very young when compared with the oldest continental rocks, which date from 3.8 billion years ago. In order to collect paleomagnetic data dating beyond 200 mya, scientists turn to magnetite-bearing samples on land to reconstruct the Earth's ancient field orientation.

Paleomagnetists, like many geologists, gravitate towards outcrops because layers of rock are exposed. Road cuts are a convenient man-made source of outcrops.

"And everywhere, in profusion along this half mile of [roadcut], there are small, neatly cored holes ... appears to be a Hilton for wrens and purple martins." [11]

There are two main goals of sampling:

  1. Retrieve samples with accurate orientations, and
  2. Reduce statistical uncertainty.

One way to achieve the first goal is to use a rock coring drill that has a pipe tipped with diamond bits. The drill cuts a cylindrical space around some rock. This can be messy – the drill must be cooled with water, and the result is mud spewing out of the hole. Into this space is inserted another pipe with compass and inclinometer attached. These provide the orientations. Before this device is removed, a mark is scratched on the sample. After the sample is broken off, the mark can be augmented for clarity. [12]


Paleomagnetic evidence, both reversals and polar wandering data, was instrumental in verifying the theories of continental drift and plate tectonics in the 1960s and 1970s. Some applications of paleomagnetic evidence to reconstruct histories of terranes have continued to arouse controversies. Paleomagnetic evidence is also used in constraining possible ages for rocks and processes and in reconstructions of the deformational histories of parts of the crust. [3]

Reversal magnetostratigraphy is often used to estimate the age of sites bearing fossils and hominin remains. [13] Conversely, for a fossil of known age, the paleomagnetic data can fix the latitude at which the fossil was laid down. Such a paleolatitude provides information about the geological environment at the time of deposition.

Paleomagnetic studies are combined with geochronological methods to determine absolute ages for rocks in which the magnetic record is preserved. For igneous rocks such as basalt, commonly used methods include potassium–argon and argon–argon geochronology.

Scientists in New Zealand have found that they are able to figure out the Earth's past magnetic field changes by studying 700- to 800-year-old steam ovens, or hangi, used by the Maori for cooking food. [14]

See also

Notes and references

  1. W. Jacquelyne, Kious; Robert I., Tilling (2001). "Developing the theory". This dynamic earth: the story of plate tectonics (online edition version 1.20). Washington, D.C.: U.S. Geological Survey. ISBN   0-16-048220-8 . Retrieved 6 November 2016.
  2. 1 2 Glen 1982
  3. 1 2 McElhinny & McFadden 2000
  4. Glen, William (1982). The Road to Jaramillo: Critical Years of the Revolution in Earth Science. Stanford University Press. pp.  4–5. ISBN   0-8047-1119-4.
  5. Runcorn, S. K. (1956). "Paleomagnetic comparisons between Europe and North America". Proc. Geol. Assoc. Canada. 8: 77–85.
  6. Irving, E. (1956). "Paleomagnetic and palaeoclimatological aspects of polar wandering". Geofis. Pura. Appl. 33 (1): 23–41. Bibcode:1956GeoPA..33...23I. doi:10.1007/BF02629944.
  7. Herries, A. I. R.; Adams, J. W.; Kuykendall, K. L.; Shaw, J. (2006). "Speleology and magnetobiostratigraphic chronology of the GD 2 locality of the Gondolin hominin-bearing paleocave deposits, North West Province, South Africa". Journal of Human Evolution. 51 (6): 617–31. doi:10.1016/j.jhevol.2006.07.007. PMID   16949648.
  8. "Detrital Remanent Magnetization (DRM)". MagWiki: A Magnetic Wiki for Earth Scientists. Retrieved 11 November 2011.
  9. 1 2 Tauxe, Lisa (24 May 2016). "Chemical remanent magnetization". Essentials of Paleomagnetism: Web Edition 3.0. Retrieved 18 September 2017.
  10. Dunlop & Özdemir 1997
  11. McPhee 1998 , pp. 21–22
  12. Tauxe 1998
  13. Herries, A. I. R.; Kovacheva, M.; Kostadinova, M.; Shaw, J. (2007). "Archaeo-directional and -intensity data from burnt structures at the Thracian site of Halka Bunar (Bulgaria): The effect of magnetic mineralogy, temperature and atmosphere of heating in antiquity". Physics of the Earth and Planetary Interiors . 162 (3–4): 199–216. Bibcode:2007PEPI..162..199H. doi:10.1016/j.pepi.2007.04.006.
  14. Amos, Jonathan (7 December 2012). "Maori stones hold magnetic clues". BBC News. Retrieved 7 December 2012.

Further reading

Related Research Articles

Earths magnetic field Magnetic field that extends from the Earth’s inner core to where it meets the solar wind

Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from the Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic field is generated by electric currents due to the motion of convection currents of molten iron in the Earth's outer core: these convection currents are caused by heat escaping from the core, a natural process called a geodynamo. The magnitude of the Earth's magnetic field at its surface ranges from 25 to 65 microteslas. As an approximation, it is represented by a field of a magnetic dipole currently tilted at an angle of about 11 degrees with respect to Earth's rotational axis, as if there were an enormous bar magnet placed at that angle through the center of the Earth. The North geomagnetic pole, which was in 2015 located on Ellesmere Island, Nunavut, Canada, in the northern hemisphere, is actually the south pole of the Earth's magnetic field, and conversely.

Stratigraphy The study of rock layers and their formation

Stratigraphy is a branch of geology concerned with the study of rock layers (strata) and layering (stratification). It is primarily used in the study of sedimentary and layered volcanic rocks. Stratigraphy has two related subfields: lithostratigraphy and biostratigraphy.

Remanence or remanent magnetization or residual magnetism is the magnetization left behind in a ferromagnetic material after an external magnetic field is removed. Colloquially, when a magnet is "magnetized" it has remanence. The remanence of magnetic materials provides the magnetic memory in magnetic storage devices, and is used as a source of information on the past Earth's magnetic field in paleomagnetism.

Rock magnetism The study of magnetism in rocks

Rock magnetism is the study of the magnetic properties of rocks, sediments and soils. The field arose out of the need in paleomagnetism to understand how rocks record the Earth's magnetic field. This remanence is carried by minerals, particularly certain strongly magnetic minerals like magnetite. An understanding of remanence helps paleomagnetists to develop methods for measuring the ancient magnetic field and correct for effects like sediment compaction and metamorphism. Rock magnetic methods are used to get a more detailed picture of the source of distinctive striped pattern in marine magnetic anomalies that provides important information on plate tectonics. They are also used to interpret terrestrial magnetic anomalies in magnetic surveys as well as the strong crustal magnetism on Mars.

A geomagnetic reversal is a change in a planet's magnetic field such that the positions of magnetic north and magnetic south are interchanged. The Earth's field has alternated between periods of normal polarity, in which the predominant direction of the field was the same as the present direction, and reverse polarity, in which it was the opposite. These periods are called chrons.

Archaeomagnetic dating is the study and interpretation of the signatures of the Earth's magnetic field at past times recorded in archaeological materials. These paleomagnetic signatures are fixed when ferromagnetic materials such as magnetite cool below the Curie point, freezing the magnetic moment of the material in the direction of the local magnetic field at that time. The direction and magnitude of the magnetic field of the Earth at a particular location varies with time, and can be used to constrain the age of materials. In conjunction with techniques such as radiometric dating, the technique can be used to construct and calibrate the geomagnetic polarity time scale. This is one of the dating methodologies used for sites within the last 10,000 years. The method has been conceived by E. Thellier in the 1930s and the increased sensitivity of SQUID magnetometers has greatly promoted its use.

Magnetic anomaly anomaly of the Earths magnetic field

In geophysics, a magnetic anomaly is a local variation in the Earth's magnetic field resulting from variations in the chemistry or magnetism of the rocks. Mapping of variation over an area is valuable in detecting structures obscured by overlying material. The magnetic variation in successive bands of ocean floor parallel with mid-ocean ridges is important evidence supporting the theory of seafloor spreading, central to plate tectonics.

Magnetofossils are the fossil remains of magnetic particles produced by magnetotactic bacteria (magnetobacteria) and preserved in the geologic record. The oldest definitive magnetofossils formed of the mineral magnetite come from the Cretaceous chalk beds of southern England, while magnetofossil reports, not considered to be robust, extend on Earth to the 1.9-billion-year-old Gunflint Chert; they include the four-billion-year-old Martian meteorite ALH84001.

Natural remnant magnetization (NRM) is the permanent magnetism of a rock or sediment. This preserves a record of the Earth's magnetic field at the time the mineral was laid down as sediment or crystallized in magma and also the tectonic movement of the rock over millions of years from its original position. Natural remanent magnetization forms the basis of paleomagnetism and magnetostratigraphy.

Vine–Matthews–Morley hypothesis The first key scientific test of the seafloor spreading theory of continental drift and plate tectonics.

The Vine–Matthews–Morley hypothesis, also known as the Morley–Vine–Matthews hypothesis, was the first key scientific test of the seafloor spreading theory of continental drift and plate tectonics. Its key impact was that it allowed the rates of plate motions at mid-ocean ridges to be computed. It states that the Earth's oceanic crust acts as a recorder of reversals in the geomagnetic field direction as seafloor spreading takes place.

Magnetostratigraphy is a geophysical correlation technique used to date sedimentary and volcanic sequences. The method works by collecting oriented samples at measured intervals throughout the section. The samples are analyzed to determine their characteristic remanent magnetization (ChRM), that is, the polarity of Earth's magnetic field at the time a stratum was deposited. This is possible because volcanic flows acquire a thermoremanent magnetization and sediments acquire a depositional remanent magnetization, both of which reflect the direction of the Earth's field at the time of formation. This technique is typically used to date sequences that generally lack fossils or interbedded igneous rock.

Viscous remanent magnetization, also known as viscous magnetization, is remanence that is acquired by ferromagnetic materials by sitting in a magnetic field for some time. The natural remanent magnetization of an igneous rock can be altered by this process. This is generally an unwanted component and some form of stepwise demagnetization must be used to remove it.

Richard Doell was a distinguished American scientist known for developing the time scale for geomagnetic reversals with Allan V. Cox and Brent Dalrymple. This work was a major step in the development of plate tectonics. Doell shared the Vetlesen Prize with Cox and Dalrymple.

Apparent polar wander (APW) is the perceived movement of the Earth's paleo-magnetic poles relative to a continent while regarding the continent being studied as fixed in position. It is frequently displayed on the present latitude-longitude map as a path connecting the locations of geomagnetic poles, inferred at distinct times using paleomagnetic techniques.

Plate reconstruction is the process of reconstructing the positions of tectonic plates relative to each other or to other reference frames, such as the earth's magnetic field or groups of hotspots, in the geological past. This helps determine the shape and make-up of ancient supercontinents and provides a basis for paleogeographic reconstructions.

When an igneous rock cools, it acquires a thermoremanent magnetization (TRM) from the Earth's field. TRM can be much larger than it would be if exposed to the same field at room temperature. This remanence can also be very stable, lasting without significant change for millions of years. TRM is the main reason that paleomagnetists are able to deduce the direction and magnitude of the ancient Earth's field.

Outline of geophysics Topics in the physics of the Earth and its vicinity

The following outline is provided as an overview of and topical guide to geophysics:

In geomagnetism, paleointensity is the study of changes in the strength of the geomagnetic field over Earth's history. Émile and Odette Thellier were the first to make laboratory measurements to determine the strength of the ancient field responsible for producing remanent magnetization in a rock or archeological artifacts.

Crustal magnetism

Crustal magnetism is the magnetic field of the crust of a planetary body. The crustal magnetism of Earth has been studied, in particular various magnetic crustal anomalies have been studied. Two examples of crustal magnetic anomalies on Earth that have been studied in the Americas are the Brunswick magnetic anomaly (BMA) and East Coast magnetic anomaly (ECMA). Also there can be a correlation between physical geological features and certain readings from crustal magnetism on Earth. Below the surface of the Earth the temperature increases and so the crustal magnetism is lost because it rises above the curie temperate of the materials producing the field.