Luminescence dating refers to a group of chronological dating methods of determining how long ago mineral grains were last exposed to sunlight or sufficient heating. It is useful to geologists and archaeologists who want to know when such an event occurred. It uses various methods to stimulate and measure luminescence.
It includes techniques such as optically stimulated luminescence (OSL), infrared stimulated luminescence (IRSL), radiofluorescence (RF) [1] [2] [3] , infrared photoluminescence (IR-PL) [4] and thermoluminescence dating (TL). "Optical dating" typically refers to OSL and IRSL, but not TL. The age range of luminescence dating methods extends from a few years [5] to over one million years for red TL. [6]
Since the early applications of luminescence dating in the 1960/1970s, the field has received growing attention in the scientific community, with more than 3500 publications per year and >200 laboratories across the globe in 2020. [7]
All sediments and soils contain trace amounts of radioactive isotopes of elements such as potassium, uranium, thorium, and rubidium. These slowly decay over time and the ionizing radiation they produce is absorbed by mineral grains in the sediments such as quartz and potassium feldspar. The radiation causes charge to remain within the grains in structurally unstable "electron traps". The trapped charge accumulates over time at a rate determined by the amount of background radiation at the location where the sample was buried. Stimulating these mineral grains using either light (blue or green for OSL; infrared for IRSL) or heat (for TL) causes a luminescence signal to be emitted as the stored unstable electron energy is released, the intensity of which varies depending on the amount of radiation absorbed during burial and specific properties of the mineral.
Most luminescence dating methods rely on the assumption that the mineral grains were sufficiently "bleached" at the time of the event being dated. For example, in quartz a short daylight exposure in the range of 1–100 s before burial is sufficient to effectively “reset” the OSL dating clock. [8] [9] This is usually, but not always, the case with aeolian deposits, such as sand dunes and loess, and some water-laid deposits. Single Quartz OSL ages can be determined typically from 100 to 350,000 years BP, and can be reliable when suitable methods are used and proper checks are done. [10] Feldspar IRSL techniques have the potential to extend the datable range out to a million years as feldspars typically have significantly higher dose saturation levels than quartz, though issues regarding anomalous fading will need to be dealt with first. [9] Ages can be obtained outside these ranges, but they should be regarded with caution. The uncertainty of an OSL date is typically 5-10% of the age of the sample. [11]
The most common methods of OSL dating are the so-called multiple-aliquot-dose (MAD) and single-aliquot-regenerative-dose (SAR) [12] technique. In multiple-aliquot testing, a number of grains of sand are stimulated at the same time and the resulting luminescence signature is averaged. [13] The problem with this technique is that the operator does not know the individual figures that are being averaged, and so if there are partially prebleached grains in the sample it can give an exaggerated age. [13] In contrast to the multiple-aliquot method, the SAR method tests the burial ages of individual grains of sand which are then plotted. Mixed deposits can be identified and taken into consideration when determining the age. [13]
The concept of using luminescence dating in archaeological contexts was first suggested in 1953 by Farrington Daniels, Charles A. Boyd, and Donald F. Saunders, who thought the thermoluminescence response of pottery shards could date the last incidence of heating. [15] Experimental tests on archaeological ceramics followed a few years later in 1960 by Grögler et al. [16] Over the next few decades, thermoluminescence research was focused on heated pottery and ceramics, burnt flints, baked hearth sediments, oven stones from burnt mounds and other heated objects. [11]
In 1963, Aitken et al. noted that TL traps in calcite could be bleached by sunlight as well as heat, [17] and in 1965 Shelkoplyas and Morozov were the first to use TL to date unheated sediments. [18] Throughout the 70s and early 80s TL dating of light-sensitive traps in geological sediments of both terrestrial and marine origin became more widespread. [19]
Optical dating using optically stimulated luminescence (OSL) was developed in 1984 by David J. Huntley and colleagues. [20] Hütt et al. laid the groundwork for the infrared stimulated luminescence (IRSL) dating of potassium feldspars in 1988. [21] . The traditional OSL method relies on optical stimulation and transfer of electrons from one trap, to holes located elsewhere in the lattice – necessarily requiring two defects to be in nearby proximity, and hence it is a destructive technique. Nearby electron/hole trapping centres, in particular in feldspars, may suffer from localised tunnelling, which leads to so-called athermal fading of the signal of interest over time. [22] [23] [24]
In 1994, the principles behind optical and thermoluminescence dating were extended to include surfaces made of granite, basalt and sandstone, such as carved rock from ancient monuments and artifacts. Ioannis Liritzis, the initiator of ancient buildings luminescence dating, has shown this in several cases of various monuments. [25] [26] [27]
Luminescence dating is one of several techniques in which an age is calculated as follows: [25]
Where A is the age, typically given in years or thousand years (ka, ky, kyr), the equivalent dose in Gy (Gray) and in Gy ka-1 the environmental dose rate.
The environmental dose rate is calculated using conversion factors [28] [29] from measurements of radionuclides (40K, 238U, 235U, 232Th and 87Rb) within the sample and its surroundings and the radiation dose rate from cosmic rays [30] . The dose rate is usually in the range of 0.5 - 5 Gy/1000 years. The total absorbed radiation dose is determined by exciting, with light, specific minerals (usually quartz or potassium feldspar) extracted from the sample, and measuring the amount of light emitted as a result. The photons of the emitted light must have higher energies than the excitation photons in order to avoid measurement of ordinary photoluminescence. A sample in which the mineral grains have all been exposed to sufficient daylight (seconds for quartz; hundreds of seconds for potassium feldspar) can be said to be of zero age; when excited it will not emit any such photons. The older the sample is, the more light it emits, up to a saturation limit.
The natural minerals that are measured are usually either quartz or potassium feldspar sand-sized grains, or unseparated silt-sized grains. There are advantages and disadvantages to using each. For quartz, blue or green excitation wavelengths are normally used and the near ultra-violet emission is measured (Anti-Stokes shift). For potassium feldspar or silt-sized grains, near infrared excitation (IRSL) is normally used and the violet/blue emissions are measured.
Unlike 14C dating, luminescence dating methods do not require a contemporary organic component of the sediment to be dated; just quartz, potassium feldspar, or certain other mineral grains that have been fully bleached during the event being dated. These methods also do not suffer from overestimation of dates when the sediment in question has been mixed with “old carbon”, or 14
C-deficient carbon that is not the same isotopic ratio as the atmosphere. In a study of the chronology of arid-zone lacustrine sediments from Lake Ulaan in southern Mongolia, Lee et al. discovered that OSL and radiocarbon dates agreed in some samples, but the radiocarbon dates were up to 5800 years older in others. [31]
The sediments with disagreeing ages were determined to be deposited by aeolian processes. Westerly winds delivered an influx of 14
C-deficient carbon from adjacent soils and Paleozoic carbonate rocks, a process that is also active today. This reworked carbon changed the measured isotopic ratios, giving a false older age. However, the wind-blown origin of these sediments were ideal for OSL dating, as most of the grains would have been completely bleached by sunlight exposure during transport and burial. Lee et al. concluded that when aeolian sediment transport is suspected, especially in lakes of arid environments, the OSL dating method is superior to the radiocarbon dating method, as it eliminates a common ‘old-carbon’ error problem. [31]
One of the benefits of luminescence dating is that it can be used to confirm the authenticity of an artifact. Under proper low light conditions a sample in the tens of milligrams can be used. [32]
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)Geochronology is the science of determining the age of rocks, fossils, and sediments using signatures inherent in the rocks themselves. Absolute geochronology can be accomplished through radioactive isotopes, whereas relative geochronology is provided by tools such as paleomagnetism and stable isotope ratios. By combining multiple geochronological indicators the precision of the recovered age can be improved.
Thermoluminescence dating (TL) is the determination, by means of measuring the accumulated radiation dose, of the time elapsed since material containing crystalline minerals was either heated or exposed to sunlight (sediments). As a crystalline material is heated during measurements, the process of thermoluminescence starts. Thermoluminescence emits a weak light signal that is proportional to the radiation dose absorbed by the material. It is a type of luminescence dating.
A loess is a clastic, predominantly silt-sized sediment that is formed by the accumulation of wind-blown dust. Ten percent of Earth's land area is covered by loesses or similar deposits.
In physics, optically stimulated luminescence (OSL) is a method for measuring doses from ionizing radiation. It is used in at least two applications:
Thermoluminescence is a form of luminescence that is exhibited by certain crystalline materials, such as some minerals, when previously absorbed energy from electromagnetic radiation or other ionizing radiation is re-emitted as light upon heating of the material. The phenomenon is distinct from that of black-body radiation.
Carolina bays are elliptical to circular depressions concentrated along the East Coast of the United States within coastal New York, New Jersey, Delaware, Maryland, Virginia, North Carolina, South Carolina, Georgia, and north Florida. In Maryland, they are called Maryland basins. Within the Delmarva Peninsula, they and other coastal ponds are also called Delmarva bays.
Archaeological science consists of the application of scientific techniques to the analysis of archaeological materials and sites. It is related to methodologies of archaeology. Martinón-Torres and Killick distinguish ‘scientific archaeology’ from ‘archaeological science’. Martinón-Torres and Killick claim that ‘archaeological science’ has promoted the development of high-level theory in archaeology. However, Smith rejects both concepts of archaeological science because neither emphasize falsification or a search for causality.
Absolute dating is the process of determining an age on a specified chronology in archaeology and geology. Some scientists prefer the terms chronometric or calendar dating, as use of the word "absolute" implies an unwarranted certainty of accuracy. Absolute dating provides a numerical age or range, in contrast with relative dating, which places events in order without any measure of the age between events.
Greek pyramids, also known as the Pyramids of Argolis, refers to several ancient structures located in the plains of Argolid, Greece. The best known of these is known as the Pyramid of Hellinikon. In the time of the geographer Pausanias it was considered to be a tomb. Twentieth century researchers have suggested other possible uses. The surrounding country of Apobathmi was called Pyramia (Πυράμια), from the monuments in the form of pyramids found there.
In statistics, a Galbraith plot is one way of displaying several estimates of the same quantity that have different standard errors.
S P Crater is a cinder cone volcano in the San Francisco volcanic field, 25 miles (40 km) north of Flagstaff, Arizona, United States. It is surrounded by several other cinder cones which are older and more eroded. It is a striking feature on the local landscape, with a well-defined lava flow that extends for 4.3 miles (7 km) to the north. American astronauts use the crater to train for moonwalking.
Howiesons Poort is a technological and cultural period characterized by material evidence with shared design features found in South Africa, Lesotho, and Namibia. It was named after the Howieson's Poort Shelter archaeological site near Grahamstown in South Africa, where the first assemblage of these tools was discovered. Howiesons Poort is believed, based on chronological comparisons between many sites, to have started around 64.8 thousand years ago and ended around 59.5 thousand years ago. It is considered to be a technocomplex, or a cultural period in archaeology classified by distinct and specific technological materials. Howiesons Poort is notable for its relatively complex tools, technological innovations, and cultural objects evidencing symbolic expression. One site in particular, Sibudu Cave, provides one of the key reference sequences for Howiesons Poort. Howiesons Poort assemblages are primarily found at sites south of the Limpopo River.
Ioannis Liritzis is professor of physics in archaeology (archaeometry) and his field of specialization is the application of natural sciences to archaeology and cultural heritage. He studied physics at the University of Patras and continued at the University of Edinburgh, where he obtained his Ph.D. in 1980. Since then, he undertook postgraduate work at the University of Oxford, Université Bordeaux III, University of Edinburgh and the Academy of Athens.
Ancient TL is a peer-reviewed open-access scientific journal covering luminescence and electron spin resonance dating. It is published by the Institute of Earth Surface Dynamics, University of Lausanne.
Electron spin resonance dating, or ESR dating, is a technique used to date materials which radiocarbon dating cannot, including minerals, biological materials, archaeological materials and food. Electron spin resonance dating was first introduced to the science community in 1975, when Japanese nuclear physicist Motoji Ikeya dated a speleothem in Akiyoshi Cave, Japan. ESR dating measures the amount of unpaired electrons in crystalline structures that were previously exposed to natural radiation. The age of a substance can be determined by measuring the dosage of radiation since the time of its formation.
Chronological dating, or simply dating, is the process of attributing to an object or event a date in the past, allowing such object or event to be located in a previously established chronology. This usually requires what is commonly known as a "dating method". Several dating methods exist, depending on different criteria and techniques, and some very well known examples of disciplines using such techniques are, for example, history, archaeology, geology, paleontology, astronomy and even forensic science, since in the latter it is sometimes necessary to investigate the moment in the past during which the death of a cadaver occurred. These methods are typically identified as absolute, which involves a specified date or date range, or relative, which refers to dating which places artifacts or events on a timeline relative to other events and/or artifacts. Other markers can help place an artifact or event in a chronology, such as nearby writings and stratigraphic markers.
Optically stimulated luminescence (OSL) thermochronometry is a dating method used to determine the time since quartz and/or feldspar began to store charge as it cools through the effective closure temperature. The closure temperature for quartz and Na-rich K-feldspar is 30-35 °C and 25 °C respectively. When quartz and feldspar are beneath the earth, they are hot. They cool when any geological process e.g. focused erosion causes their exhumation to the earth surface. As they cool, they trap electron charges originating from within the crystal lattice. These charges are accommodated within crystallographic defects or vacancies in their crystal lattices as the mineral cools below the closure temperature.
The Riadino-5 Site is an archaeological site located on a terrace within the Šešupė River Valley in the Kaliningrad Oblast of the Russian Federation. Unlike most other sites near this area, the Riadino-5 site is one of the first sites of the Middle to Upper Paleolithic transitional period to have been found in the Baltic region, which includes Lithuania, Latvia, Estonia, and areas of the Russian Federation. Even when compared to other sites of similar age, the Riadino-5 site is still one of the northernmost sites to have been occupied in the Central European region. This makes it one of the oldest sites documenting human habitation, dating back all the way to the Marine Isotope Stage 3, approximately ca 57-26 thousand calendar years ago. The site itself was occupied during the Middle to Upper Paleolithic period within that era between 50 and 44 ka. Upon discovery, the site measured 200 meters by 80 meters. The approximate aging of the site was supported by findings of flint artifacts, using luminescence IRSL dating based on potassium-feldspar sample size and Carbon-14 dating of charcoal and ash layers from the site. At the moment, the exact culture and society of the site occupants has yet to be determined, and is currently undergoing comparative analysis to other similarly dated sites in the vicinity to uncover some answers.
Ashok Kumar Singhvi is an Indian geoscientist and former Dean of Physical Research Laboratory. His field of expertise is Geophysics, Quaternary Sciences and Quantitative Geomorphology.
Nauwalabila I, is a sandstone rock shelter located in Deaf Adder Gorge in the Northern Territory of Australia. Along with Madjedbebe, this site is one of the oldest in terms of human settlement in Australia, with its estimated age being greater than 50,000 years. Nowadays, this site can be found in Kakadu National Park, a UNESCO World Heritage site that is partially owned by the collective Aboriginal population of Arnhem Land.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)