Obsidian hydration dating (OHD) is a geochemical method of determining age in either absolute or relative terms of an artifact made of obsidian.
Obsidian is a volcanic glass that was used by prehistoric people as a raw material in the manufacture of stone tools such as projectile points, knives, or other cutting tools through knapping, or breaking off pieces in a controlled manner, such as pressure flaking.
Obsidian obeys the property of mineral hydration and absorbs water, when exposed to air at a well-defined rate. When an unworked nodule of obsidian is initially fractured, there is typically less than 1% water present. Over time, water slowly diffuses into the artifact forming a narrow "band", "rim", or "rind" that can be seen and measured with many different techniques such as a high-power microscope with 40–80 power magnification, depth profiling with SIMS (secondary ion mass spectrometry), and IR-PAS (infra red photoacoustic spectroscopy). [1] [2] In order to use obsidian hydration for absolute dating, the conditions that the sample has been exposed to and its origin must be understood or compared to samples of a known age (e.g. as a result of radiocarbon dating of associated materials). [3] [4]
Obsidian hydration dating was introduced in 1960 by Irving Friedman and Robert Smith of the U.S. Geological Survey. [5] Their initial work focused on obsidians from archaeological sites in western North America.
The use of Secondary ion mass spectrometry (SIMS) in the measurement of obsidian hydration dating was introduced by two independent research teams in 2002. [6] [7]
Today the technique is applied extensively by archaeologists to date prehistoric sites and sites from prehistory in California [8] and the Great Basin of North America. It has also been applied in South America, the Middle East, the Pacific Islands, including New Zealand and Mediterranean Basin.
To measure the hydration band, a small slice of material is typically cut from an artifact. This sample is ground down to about 30 micrometers thick and mounted on a petrographic slide (this is called a thin section). The hydration rind is then measured under a high-power microscope outfitted with some method for measuring distance, typically in tenths of micrometers. The technician measures the microscopic amount of water absorbed on freshly broken surfaces. The principle behind obsidian hydration dating is simple–the longer the artifact surface has been exposed, the thicker the hydration band will be.
In case of measuring the hydration rim using the depth profiling ability of the secondary ion mass spectrometry technique, the sample is mounted on a holder without any preparation or cutting. This method of measurement is non-destructive. There are two general SIMS modes: static mode and dynamic mode, depending on the primary ion current density, and three different types of mass spectrometers: magnetic sector, quadrupole and time-of-flight (TOF). Any mass-spectrometer can work in static mode (very low ion current, a top mono-atomic layer analysis), and dynamic mode (a high ion current density, in-depth analysis).
Although relatively infrequent the use of SIMS on obsidian surface investigations has produced great progress in OHD dating. SIMS in general refers to four instrumental categories according to their operation; static, dynamic, quadrupole, and time-of-flight, TOF. In essence it is a technique with a large resolution on a plethora of chemical elements and molecular structures in an essentially non destructive manner. An approach to OHD with a completely new rationale suggests that refinement of the technique is possible in a manner which improves both its accuracy and precision and potentially expands the utility by generating reliable chronological data. Anovitz et al. [9] presented a model which relied solely on compositionally-dependent diffusion, following numerical solutions (finite difference (FD), or finite element) elaborating on the H+ profile acquired by SIMS. A test of the model followed using results from Mount 65, Chalco in Mexico by Riciputi et al. [10] This technique used numerical calculation to model the formation of the entire diffusion profile as a function of time and fitted the derived curve to the hydrogen profile. The FD equations are based on a number of assumptions about the behavior of water as it diffused into the glass and characteristic points of the SIMS H+ diffusion profile.
In Rhodes, Greece, under the direction and invention of Ioannis Liritzis, [11] the dating approach is based on modeling the S-like hydrogen profile by SIMS, following Fick's diffusion law, and an understanding of the surface saturation layer (see Figure). In fact, the saturation layer on the surface forms up to a certain depth depending on factors that include the kinetics of the diffusion mechanism for the water molecules, the specific chemical structure of obsidian, as well as the external conditions affecting diffusion (temperature, relative humidity, and pressure). [12] Together these factors result in the formation of an approximately constant, boundary concentration value, in the external surface layer. Using the end product of diffusion, a phenomenological model has been developed, based on certain initial and boundary conditions and appropriate physicochemical mechanisms, that express the H2O concentration versus depth profile as a diffusion/time equation.
This latest advance, the novel secondary ion mass spectrometry–surface saturation (SIMS-SS), thus, involves modelling the hydrogen concentration profile of the surface versus depth, whereas the age determination is reached via equations describing the diffusion process, while topographical effects have been confirmed and monitored through atomic force microscopy. [13] [14] [15] [16]
Several factors complicate simple correlation of obsidian hydration band thickness with absolute age. Temperature is known to speed up the hydration process. Thus, artifacts exposed to higher temperatures, for example by being at lower elevation, seem to hydrate faster. As well, obsidian chemistry, including the intrinsic water content, seems to affect the rate of hydration. Once an archeologist can control for the geochemical signature of the obsidian (e.g., the "source") and temperature (usually approximated using an "effective hydration temperature" or EHT coefficient), he or she may be able to date the artifact using the obsidian hydration technique. Water vapor pressure may also affect the rate of obsidian hydration. [9]
The reliability of the method based on Friedman's empirical age equation (x²=kt, where x is the thickness of the hydration rim, k is the diffusion coefficient, and t is the time) is questioned from several grounds regarding temperature dependence, square root of time and determination of diffusion rate per sample and per site, as part of some successful attempts on the procedure and applications. The SIMS-SS age calculation procedure is separated into two major steps. The first step concerns the calculation of a 3rd order fitting polynomial of the SIMS profile (eq. 1). The second stage regards the determination of the saturation layer, i.e. its depth and concentration. The whole computing processing is embedded in stand-alone software created in Matlab (version 7.0.1) software package with a graphical user interface and executable under Windows XP. Thus, the SIMS-SS age equation in years before present is given in eq. 2:
Eq. 1 Fitting polynomial of the SIMS profile
Eq. 2 The SIMS-SS age equation in years before present
Where, Ci is the intrinsic concentration of water, Cs is the saturation concentration, dC/dx is the diffusion coefficient for depth x=0, k is derived from a family of Crank's theoretical diffusion curves, and is an effective diffusion coefficient (eq. 3) which relates the inverse gradient of the fit polynomial to well dated samples:
where Ds = (1/(dC/dx))10−11 assuming a constant flux and taken as unity. The eq. (2) and assumption of unity is a matter of further investigation. [17]
Several commercial companies and university laboratories provide obsidian hydration services.
Obsidian is a naturally occurring volcanic glass formed when lava extruded from a volcano cools rapidly with minimal crystal growth. It is an igneous rock. Produced from felsic lava, obsidian is rich in the lighter elements such as silicon, oxygen, aluminium, sodium, and potassium. It is commonly found within the margins of rhyolitic lava flows known as obsidian flows. These flows have a high content of silica, giving them a high viscosity. The high viscosity inhibits diffusion of atoms through the lava, which inhibits the first step (nucleation) in the formation of mineral crystals. Together with rapid cooling, this results in a natural glass forming from the lava.
An ion source is a device that creates atomic and molecular ions. Ion sources are used to form ions for mass spectrometers, optical emission spectrometers, particle accelerators, ion implanters and ion engines.
Electron ionization is an ionization method in which energetic electrons interact with solid or gas phase atoms or molecules to produce ions. EI was one of the first ionization techniques developed for mass spectrometry. However, this method is still a popular ionization technique. This technique is considered a hard ionization method, since it uses highly energetic electrons to produce ions. This leads to extensive fragmentation, which can be helpful for structure determination of unknown compounds. EI is the most useful for organic compounds which have a molecular weight below 600 amu. Also, several other thermally stable and volatile compounds in solid, liquid and gas states can be detected with the use of this technique when coupled with various separation methods.
Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. The mass/charge ratios of these secondary ions are measured with a mass spectrometer to determine the elemental, isotopic, or molecular composition of the surface to a depth of 1 to 2 nm. Due to the large variation in ionization probabilities among elements sputtered from different materials, comparison against well-calibrated standards is necessary to achieve accurate quantitative results. SIMS is the most sensitive surface analysis technique, with elemental detection limits ranging from parts per million to parts per billion.
Gold fingerprinting is a method used to identify and authenticate gold items by analyzing the unique composition of impurities or trace elements within the metal. While gold itself is an inert and relatively uniform element, gold found in natural or processed items often contains small amounts of other elements, such as silver or lead. These trace elements, which vary depending on the source and refining process, serve as a "fingerprint" for the gold. By comparing the elemental composition of a gold sample to databases of known sources, experts can determine where the gold was likely mined or processed. This technique is applied in fields such as archaeology, geology, and forensic science, as it provides insights into the provenance of historical artifacts, mined gold, or stolen items.
Archaeological science consists of the application of scientific techniques to the analysis of archaeological materials and sites. It is related to methodologies of archaeology. Martinón-Torres and Killick distinguish ‘scientific archaeology’ from ‘archaeological science’. Martinón-Torres and Killick claim that ‘archaeological science’ has promoted the development of high-level theory in archaeology. However, Smith rejects both concepts of archaeological science because neither emphasize falsification or a search for causality.
Accelerator mass spectrometry (AMS) is a form of mass spectrometry that accelerates ions to extraordinarily high kinetic energies before mass analysis. The special strength of AMS among the different methods of mass spectrometry is its ability to separate a rare isotope from an abundant neighboring mass. The method suppresses molecular isobars completely and in many cases can also separate atomic isobars. This makes possible the detection of naturally occurring, long-lived radio-isotopes such as 10Be, 36Cl, 26Al and 14C.
Geoarchaeology is a multi-disciplinary approach which uses the techniques and subject matter of geography, geology, geophysics and other Earth sciences to examine topics which inform archaeological and chronological knowledge and thought. Geoarchaeologists study the natural physical processes that affect archaeological sites such as geomorphology, the formation of sites through geological processes and the effects on buried sites and artifacts post-deposition.
Elastic recoil detection analysis (ERDA), also referred to as forward recoil scattering or spectrometry, is an ion beam analysis technique, in materials science, to obtain elemental concentration depth profiles in thin films. This technique can be achieved using many processes.
Ion beam analysis (IBA) is an important family of modern analytical techniques involving the use of MeV ion beams to probe the composition and obtain elemental depth profiles in the near-surface layer of solids. IBA is not restricted to MeV energy ranges. It can be operated at low energy (<Kev) using techniques such as FIB, and Secondary ion mass spectroscopy, as well as at higher energies (>GeV) using instruments like the LHC. All IBA methods are highly sensitive and allow the detection of elements in the sub-monolayer range. The depth resolution is typically in the range of a few nanometers to a few ten nanometers. Atomic depth resolution can be achieved, but requires special equipment. The analyzed depth ranges from a few ten nanometers to a few ten micrometers. IBA methods are always quantitative with an accuracy of a few percent. Channeling allows to determine the depth profile of damage in single crystals.
Luminescence dating refers to a group of chronological dating methods of determining how long ago mineral grains were last exposed to sunlight or sufficient heating. It is useful to geologists and archaeologists who want to know when such an event occurred. It uses various methods to stimulate and measure luminescence.
Adamantios Sampson is a Greek archaeologist who served as an Inspector of Antiquities for the Greek Administration of Antiquity. Since 1999, he has been a professor in the University of the Aegean, Department of Mediterranean Studies, Rhodes
Gas cluster ion beams (GCIB) is a technology for nano-scale modification of surfaces. It can smooth a wide variety of surface material types to within an angstrom of roughness without subsurface damage. It is also used to chemically alter surfaces through infusion or deposition.
Mass spectrometry imaging (MSI) is a technique used in mass spectrometry to visualize the spatial distribution of molecules, as biomarkers, metabolites, peptides or proteins by their molecular masses. After collecting a mass spectrum at one spot, the sample is moved to reach another region, and so on, until the entire sample is scanned. By choosing a peak in the resulting spectra that corresponds to the compound of interest, the MS data is used to map its distribution across the sample. This results in pictures of the spatially resolved distribution of a compound pixel by pixel. Each data set contains a veritable gallery of pictures because any peak in each spectrum can be spatially mapped. Despite the fact that MSI has been generally considered a qualitative method, the signal generated by this technique is proportional to the relative abundance of the analyte. Therefore, quantification is possible, when its challenges are overcome. Although widely used traditional methodologies like radiochemistry and immunohistochemistry achieve the same goal as MSI, they are limited in their abilities to analyze multiple samples at once, and can prove to be lacking if researchers do not have prior knowledge of the samples being studied. Most common ionization technologies in the field of MSI are DESI imaging, MALDI imaging, secondary ion mass spectrometry imaging and Nanoscale SIMS (NanoSIMS).
Peter M. Fischer is an Austrian-Swedish archaeologist. He is a specialist on Eastern Mediterranean and Near Eastern archaeology, and archaeometry. He belongs to the University of Gothenburg and is associated with the Austrian Academy of Sciences, Sweden. He is the founder and director of the Swedish Jordan Expedition, the Palestinian-Swedish Expedition at Tall al-Ajjul, Gaza. He became the director of the Swedish Cyprus Expedition in 2009 and carried out excavations at Hala Sultan Tekke since 2010. He is member/corresponding member of The Royal Society of Arts and Sciences in Gothenburg, Royal Swedish Academy of Letters, History and Antiquities. and The Austrian Academy of Sciences.
Ioannis Liritzis is professor of physics in archaeology (archaeometry) and his field of specialization is the application of natural sciences to archaeology and cultural heritage. He studied physics at the University of Patras and continued at the University of Edinburgh, where he obtained his Ph.D. in 1980. Since then, he undertook postgraduate work at the University of Oxford, Université Bordeaux III, University of Edinburgh and the Academy of Athens.
A weathering rind is a discolored, chemically altered, outer zone or layer of a discrete rock fragment formed by the processes of weathering. The inner boundary of a weathering rind approximately parallels the outer surface of the rock fragment in which it has developed. Rock fragments with weathering rinds normally are discrete clasts, ranging in size from pebbles to cobbles or boulders. They typically occur either lying on the surface of the ground or buried within sediments such as alluvium, colluvium, or glacial till. A weathering rind represents the alteration of the outer portion of a rock by exposure to air or near surface groundwater over a period of time. Typically, a weathering rind may be enriched with either iron or manganese, and silica, and oxidized to a yellowish red to reddish color. Often a weathering rind exhibits multiple bands of differing colors.
NanoSIMS is an analytical instrument manufactured by CAMECA which operates on the principle of secondary ion mass spectrometry. The NanoSIMS is used to acquire nanoscale resolution measurements of the elemental and isotopic composition of a sample. The NanoSIMS is able to create nanoscale maps of elemental or isotopic distribution, parallel acquisition of up to seven masses, isotopic identification, high mass resolution, subparts-per-million sensitivity with spatial resolution down to 50 nm.
The rise in core (RIC) method is an alternate reservoir wettability characterization method described by S. Ghedan and C. H. Canbaz in 2014. The method enables estimation of all wetting regions such as strongly water wet, intermediate water, oil wet and strongly oil wet regions in relatively quick and accurate measurements in terms of Contact angle rather than wettability index.
Geospeedometry is the science of measuring the timescales and/or temperatures of thermal events in the history of a metamorphic or igneous rock using diffusion profiles of elements within individual minerals. "Geospeedometry" refers to the speed, or timescale, of thermal events in geologic materials. The term first appeared in the literature in 1983; prior thermochronometric studies focused on diffusion of iron and magnesium in olivine provided the foundation for the field. Geospeedometry has since developed rapidly as further studies have experimentally calibrated the diffusivity of elements in various minerals.
{{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help)