Geochronology

Last updated
An artistic depiction of the major events in the history of Earth Geological time spiral.png
An artistic depiction of the major events in the history of Earth

Geochronology is the science of determining the age of rocks, fossils, and sediments using signatures inherent in the rocks themselves. Absolute geochronology can be accomplished through radioactive isotopes, whereas relative geochronology is provided by tools such as palaeomagnetism and stable isotope ratios. By combining multiple geochronological (and biostratigraphic) indicators the precision of the recovered age can be improved.

Contents

Geochronology is different in application from biostratigraphy, which is the science of assigning sedimentary rocks to a known geological period via describing, cataloging and comparing fossil floral and faunal assemblages. Biostratigraphy does not directly provide an absolute age determination of a rock, but merely places it within an interval of time at which that fossil assemblage is known to have coexisted. Both disciplines work together hand in hand, however, to the point where they share the same system of naming stratum (rock layers) and the time spans utilized to classify sublayers within a stratum.

The science of geochronology is the prime tool used in the discipline of chronostratigraphy, which attempts to derive absolute age dates for all fossil assemblages and determine the geologic history of the Earth and extraterrestrial bodies.

Dating methods

Units in geochronology and stratigraphy [1]
Segments of rock (strata) in chronostratigraphy Time spans in geochronology Notes to
geochronological units
Eonothem Eon 4 total, half a billion years or more
Erathem Era 10 defined, several hundred million years
System Period 22 defined, tens to ~one hundred million years
Series Epoch 34 defined, tens of millions of years
Stage Age 99 defined, millions of years
Chronozone Chron subdivision of an age, not used by the ICS timescale

Radiometric dating

By measuring the amount of radioactive decay of a radioactive isotope with a known half-life, geologists can establish the absolute age of the parent material. A number of radioactive isotopes are used for this purpose, and depending on the rate of decay, are used for dating different geological periods. More slowly decaying isotopes are useful for longer periods of time, but less accurate in absolute years. With the exception of the radiocarbon method, most of these techniques are actually based on measuring an increase in the abundance of a radiogenic isotope, which is the decay-product of the radioactive parent isotope. [2] [3] [4] Two or more radiometric methods can be used in concert to achieve more robust results. [5] Most radiometric methods are suitable for geological time only, but some such as the radiocarbon method and the 40Ar/39Ar dating method can be extended into the time of early human life [6] and into recorded history. [7]

Some of the commonly used techniques are:

Fission-track dating

Cosmogenic nuclide geochronology

A series of related techniques for determining the age at which a geomorphic surface was created (exposure dating), or at which formerly surficial materials were buried (burial dating). Exposure dating uses the concentration of exotic nuclides (e.g. 10Be, 26Al, 36Cl) produced by cosmic rays interacting with Earth materials as a proxy for the age at which a surface, such as an alluvial fan, was created. Burial dating uses the differential radioactive decay of 2 cosmogenic elements as a proxy for the age at which a sediment was screened by burial from further cosmic rays exposure.

Luminescence dating

Luminescence dating techniques observe 'light' emitted from materials such as quartz, diamond, feldspar, and calcite. Many types of luminescence techniques are utilized in geology, including optically stimulated luminescence (OSL), cathodoluminescence (CL), and thermoluminescence (TL). Thermoluminescence and optically stimulated luminescence are used in archaeology to date 'fired' objects such as pottery or cooking stones and can be used to observe sand migration.

Incremental dating

Incremental dating techniques allow the construction of year-by-year annual chronologies, which can be fixed (i.e. linked to the present day and thus calendar or sidereal time) or floating.

Paleomagnetic dating

A sequence of paleomagnetic poles (usually called virtual geomagnetic poles), which are already well defined in age, constitutes an apparent polar wander path (APWP). Such a path is constructed for a large continental block. APWPs for different continents can be used as a reference for newly obtained poles for the rocks with unknown age. For paleomagnetic dating, it is suggested to use the APWP in order to date a pole obtained from rocks or sediments of unknown age by linking the paleopole to the nearest point on the APWP. Two methods of paleomagnetic dating have been suggested: (1) the angular method and (2) the rotation method. [9] The first method is used for paleomagnetic dating of rocks inside of the same continental block. The second method is used for the folded areas where tectonic rotations are possible.

Magnetostratigraphy

Magnetostratigraphy determines age from the pattern of magnetic polarity zones in a series of bedded sedimentary and/or volcanic rocks by comparison to the magnetic polarity timescale. The polarity timescale has been previously determined by dating of seafloor magnetic anomalies, radiometrically dating volcanic rocks within magnetostratigraphic sections, and astronomically dating magnetostratigraphic sections.

Chemostratigraphy

Global trends in isotope compositions, particularly carbon-13 and strontium isotopes, can be used to correlate strata. [10]

Correlation of marker horizons

Tephra horizons in south-central Iceland. The thick and light-to-dark coloured layer at the height of the volcanologists hands is a marker horizon of rhyolitic-to-basaltic tephra from Hekla. Icelandic tephra.JPG
Tephra horizons in south-central Iceland. The thick and light-to-dark coloured layer at the height of the volcanologists hands is a marker horizon of rhyolitic-to-basaltic tephra from Hekla.

Marker horizons are stratigraphic units of the same age and of such distinctive composition and appearance, that despite their presence in different geographic sites, there is certainty about their age-equivalence. Fossil faunal and floral assemblages, both marine and terrestrial, make for distinctive marker horizons. [11] Tephrochronology is a method for geochemical correlation of unknown volcanic ash (tephra) to geochemically fingerprinted, dated tephra. Tephra is also often used as a dating tool in archaeology, since the dates of some eruptions are well-established.

Geological hierarchy of chronological periodization

Geochronology: From largest to smallest:

  1. Supereon
  2. Eon
  3. Era
  4. Period
  5. Epoch
  6. Age
  7. Chron

Differences from chronostratigraphy

It is important not to confuse geochronologic and chronostratigraphic units. [12] Geochronological units are periods of time, thus it is correct to say that Tyrannosaurus rex lived during the Late Cretaceous Epoch. [13] Chronostratigraphic units are geological material, so it is also correct to say that fossils of the genus Tyrannosaurus have been found in the Upper Cretaceous Series. [14] In the same way, it is entirely possible to go and visit an Upper Cretaceous Series deposit – such as the Hell Creek deposit where the Tyrannosaurus fossils were found – but it is naturally impossible to visit the Late Cretaceous Epoch as that is a period of time.

See also

Related Research Articles

Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares the abundance of a naturally occurring radioactive isotope within the material to the abundance of its decay products, which form at a known constant rate of decay. The use of radiometric dating was first published in 1907 by Bertram Boltwood and is now the principal source of information about the absolute age of rocks and other geological features, including the age of fossilized life forms or the age of the Earth itself, and can also be used to date a wide range of natural and man-made materials.

Age of the Earth Scientific dating of the age of the Earth

The age of the Earth is estimated to be 4.54 ± 0.05 billion years (4.54 × 109 years ± 1%). This age may represent the age of the Earth's accretion, of core formation, or of the material from which the Earth formed. This dating is based on evidence from radiometric age-dating of meteorite material and is consistent with the radiometric ages of the oldest-known terrestrial and lunar samples.

Stratigraphy The study of rock layers and their formation

Stratigraphy is a branch of geology concerned with the study of rock layers (strata) and layering (stratification). It is primarily used in the study of sedimentary and layered volcanic rocks. Stratigraphy has two related subfields: lithostratigraphy and biostratigraphy.

Potassium–argon dating, abbreviated K–Ar dating, is a radiometric dating method used in geochronology and archaeology. It is based on measurement of the product of the radioactive decay of an isotope of potassium (K) into argon (Ar). Potassium is a common element found in many materials, such as micas, clay minerals, tephra, and evaporites. In these materials, the decay product 40
Ar
is able to escape the liquid (molten) rock, but starts to accumulate when the rock solidifies (recrystallizes). The amount of argon sublimation that occurs is a function of the purity of the sample, the composition of the mother material, and a number of other factors. These factors introduce error limits on the upper and lower bounds of dating, so that final determination of age is reliant on the environmental factors during formation, melting, and exposure to decreased pressure and/or open-air. Time since recrystallization is calculated by measuring the ratio of the amount of 40
Ar
accumulated to the amount of 40
K
remaining. The long half-life of 40
K
allows the method to be used to calculate the absolute age of samples older than a few thousand years.

Uranium–thorium dating, also called thorium-230 dating, uranium-series disequilibrium dating or uranium-series dating, is a radiometric dating technique established in the 1960s which has been used since the 1970s to determine the age of calcium carbonate materials such as speleothem or coral. Unlike other commonly used radiometric dating techniques such as rubidium–strontium or uranium–lead dating, the uranium-thorium technique does not measure accumulation of a stable end-member decay product. Instead, it calculates an age from the degree to which secular equilibrium has been restored between the radioactive isotope thorium-230 and its radioactive parent uranium-234 within a sample.

Argon–argondating is a radiometric dating method invented to supersede potassium-argon (K/Ar) dating in accuracy. The older method required splitting samples into two for separate potassium and argon measurements, while the newer method requires only one rock fragment or mineral grain and uses a single measurement of argon isotopes. 40Ar/39Ar dating relies on neutron irradiation from a nuclear reactor to convert a stable form of potassium (39K) into the radioactive 39Ar. As long as a standard of known age is co-irradiated with unknown samples, it is possible to use a single measurement of argon isotopes to calculate the 40K/40Ar* ratio, and thus to calculate the age of the unknown sample. 40Ar* refers to the radiogenic 40Ar, i.e. the 40Ar produced from radioactive decay of 40K. 40Ar* does not include atmospheric argon adsorbed to the surface or inherited through diffusion and its calculated value is derived from measuring the 36Ar and assuming that 40Ar is found in a constant ratio to 36Ar in atmospheric gases.

George Wetherill was the Director Emeritus, Department of Terrestrial Magnetism, Carnegie Institution of Washington, DC, USA.

Uranium–lead dating, abbreviated U–Pb dating, is one of the oldest and most refined of the radiometric dating schemes. It can be used to date rocks that formed and crystallised from about 1 million years to over 4.5 billion years ago with routine precisions in the 0.1–1 percent range.

Absolute dating is the process of determining an age on a specified chronology in archaeology and geology. Some scientists prefer the terms chronometric or calendar dating, as use of the word "absolute" implies an unwarranted certainty of accuracy. Absolute dating provides a numerical age or range in contrast with relative dating which places events in order without any measure of the age between events.

Fission track dating is a radiometric dating technique based on analyses of the damage trails, or tracks, left by fission fragments in certain uranium-bearing minerals and glasses. Fission-track dating is a relatively simple method of radiometric dating that has made a significant impact on understanding the thermal history of continental crust, the timing of volcanic events, and the source and age of different archeological artifacts. The method involves using the number of fission events produced from the spontaneous decay of uranium-238 in common accessory minerals to date the time of rock cooling below closure temperature. Fission tracks are sensitive to heat, and therefore the technique is useful at unraveling the thermal evolution of rocks and minerals. Most current research using fission tracks is aimed at: a) understanding the evolution of mountain belts; b) determining the source or provenance of sediments; c) studying the thermal evolution of basins; d) determining the age of poorly dated strata; and e) dating and provenance determination of archeological artifacts.

Chronostratigraphy is the branch of stratigraphy that studies the age of rock strata in relation to time.

Luminescence dating refers to a group of methods of determining how long ago mineral grains were last exposed to sunlight or sufficient heating. It is useful to geologists and archaeologists who want to know when such an event occurred. It uses various methods to stimulate and measure luminescence.

In paleontology, biochronology is the correlation in time of biological events using fossils. In its strict sense, it refers to the use of assemblages of fossils that are not tied to stratigraphic sections. Collections of land mammal ages have been defined for every continent except Antarctica, and most are correlated with each other indirectly through known evolutionary lineages. A combination of argon–argon dating and magnetic stratigraphy allows a direct temporal comparison of terrestrial events with climate change and mass extinctions.

Pilot Knob (Austin, Texas) Eroded core of an extinct volcano located 8 miles (13 km) south of central Austin, Texas

Pilot Knob is the eroded core of an extinct volcano located 8 miles (13 km) south of central Austin, Texas, near Austin-Bergstrom International Airport and McKinney Falls State Park.

Thermochronology

Thermochronology is the study of the thermal evolution of a region of a planet. Thermochronologists use radiometric dating along with the closure temperatures that represent the temperature of the mineral being studied at the time given by the date recorded to understand the thermal history of a specific rock, mineral, or geologic unit. It is a subfield within geology, and is closely associated with geochronology.

Geochronometry is a branch of stratigraphy aimed at the quantitative measurement of geologic time. It is considered a branch of geochronology.

Chronological dating, or simply dating, is the process of attributing to an object or event a date in the past, allowing such object or event to be located in a previously established chronology. This usually requires what is commonly known as a "dating method". Several dating methods exist, depending on different criteria and techniques, and some very well known examples of disciplines using such techniques are, for example, history, archaeology, geology, paleontology, astronomy and even forensic science, since in the latter it is sometimes necessary to investigate the moment in the past in which the death of a cadaver occurred.

Monazite geochronology dating technique to study geological history using the mineral monazite

Monazite geochronology is a dating technique to study geological history using the mineral monazite. It is a powerful tool in studying the complex history of metamorphic rocks particularly, as well as igneous, sedimentary and hydrothermal rocks. The dating uses the radioactive processes in monazite as a clock.

Kanchan Pande is an Indian Isotope geologist, geochronologist and a professor at the department of earth sciences of the Indian Institute of Technology Mumbai. He is known for his studies on the evolution of continental flood basalts in the Indian subcontinent and is an elected fellow of the National Academy of Sciences, India. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards for his contributions to Earth, Atmosphere, Ocean and Planetary Sciences in 2003.

Potassium–calcium dating, abbreviated K–Ca dating, is a radiometric dating method used in geochronology. It is based upon measuring the ratio of a parent isotope of potassium (40K) to a daughter isotope of calcium (40Ca). This form of radioactive decay is accomplished through beta decay.

References

  1. Cohen, K.M.; Finney, S.; Gibbard, P.L. (2015), International Chronostratigraphic Chart (PDF), International Commission on Stratigraphy.
  2. Dickin, A. P. 1995. Radiogenic Isotope Geology. Cambridge, Cambridge University Press. ISBN   0-521-59891-5
  3. Faure, G. 1986. Principles of isotope geology. Cambridge, Cambridge University Press. ISBN   0-471-86412-9
  4. Faure, G., and Mensing, D. 2005. "Isotopes - Principles and applications". 3rd Edition. J. Wiley & Sons. ISBN   0-471-38437-2
  5. Dalrymple G. B., Grove M., Lovera O. M., Harrison, T. M., Hulen, J. B., and Lanphere, M. A. 1999. Age and thermal history of the Geysers plutonic complex (felsite unit), Geysers geothermal field, California: a 40Ar/39Ar and U–Pb study. Earth and Planetary Science Letters, 173, 285–298
  6. Ludwig, K. R. and Renne, P. R. 2000. Geochronology on the Paleoanthropological Time Scale. Evolutionary Anthropology, 9, 101-110
  7. Renne, P. R., Sharp, W. D., Deino. A. L., Orsi, G., and Civetta, L. 1997. 40Ar/39Ar dating into the historical realm: Calibration against Pliny the Younger. Science, 277, 1279-1280 "Archived copy" (PDF). Archived from the original (PDF) on 2008-10-30. Retrieved 2008-10-25.CS1 maint: archived copy as title (link)
  8. Plastino, W.; Kaihola, L.; Bartolomei, P.; Bella, F. (2001). "Cosmic Background Reduction In The Radiocarbon Measurement By Scintillation Spectrometry At The Underground Laboratory Of Gran Sasso" (PDF). Radiocarbon. 43 (2A): 157–161. doi:10.1017/S0033822200037954. Archived from the original (PDF) on 2008-05-27.
  9. Hnatyshin, D., and Kravchinsky, V.A., 2014. Paleomagnetic dating: Methods, MATLAB software, example. Tectonophysics, doi: 10.1016/j.tecto.2014.05.013
  10. Brasier, M D; Sukhov, S S (1 April 1998). "The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian: northern Siberia data". Canadian Journal of Earth Sciences. 35 (4): 353–373. doi:10.1139/e97-122.
  11. Demidov, I.N. 2006. Identification of marker horizon in bottom sediments of the Onega Periglacial Lake. Doklady Earth Sciences, 407, 213-216
  12. David Weishampel: The Evolution and Extinction of the Dinosaurs, 1996, Cambridge Press, ISBN   0-521-44496-9
  13. Julia Jackson: Glossary of Geology, 1987, American Geological Institute, ISBN   0-922152-34-9
  14. Smith, J.B., Lamanna, M.C., Lacovara, K.J., Dodson, P. Jnr., Poole, J.C. and Giegengack, R. 2001. A Giant Sauropod Dinosaur from an Upper Cretaceous Mangrove Deposit in Egypt. Science, 292, 1704-1707 "Archived copy". Archived from the original on 2008-09-08. Retrieved 2008-10-24.CS1 maint: archived copy as title (link)

Further reading