Optically stimulated luminescence

Last updated

In physics, optically stimulated luminescence (OSL) is a method for measuring doses from ionizing radiation. It is used in at least two applications:

The method makes use of electrons trapped between the valence and conduction bands in the crystalline structure of certain minerals (most commonly quartz and feldspar). [1] The trapping sites are imperfections of the lattice — impurities or defects. The ionizing radiation produces electron-hole pairs: Electrons are in the conduction band and holes in the valence band. The electrons that have been excited to the conduction band may become entrapped in the electron or hole traps. Under the stimulation of light, the electrons may free themselves from the trap and get into the conduction band. From the conduction band, they may recombine with holes trapped in hole traps. If the centre with the hole is a luminescence center (radiative recombination centre), emission of light will occur. The photons are detected using a photomultiplier tube. The signal from the tube is then used to calculate the dose that the material had absorbed.

The OSL dosimeter provides a new degree of sensitivity by giving an accurate reading as low as 1 mrem for x-ray and gamma ray photons with energies ranging from 5 keV to greater than 40 MeV. The OSL dosimeter's maximum equivalent dose measurement for x-ray and gamma ray photons is 1000 rem. For beta particles with energies from 150 keV to in excess of 10 MeV, dose measurement ranges from 10 mrem to 1000 rem. Neutron radiation with energies of 40 keV to greater than 35 MeV has a dose measurement range from 20 mrem to 25 rem. In diagnostic imaging, the increased sensitivity of the OSL dosimeter makes it ideal for monitoring employees working in low-radiation environments and for pregnant workers.[ citation needed ]

To carry out OSL dating, mineral grains have to be extracted from the sample. Most commonly these are so-called coarse grains of 100-200 μm or fine grains of 4-11 μm. Occasionally other grain sizes are used.[ citation needed ]

The difference between radiocarbon dating and OSL is that the former is used to date organic materials, while the latter is used to date minerals. Events that can be dated using OSL are, for example, the mineral's last exposure to sunlight; Mungo Man, Australia's oldest human find, was dated in this manner. [2] It is also used for dating the deposition of geological sediments after they have been transported by air (aeolian sediments) or rivers (fluvial sediments). In archaeology, OSL dating is applied to ceramics: The dated event is the time of their last heating to a high temperature (in excess of 400 °C).

Recent OSL dating of stone tools in Arabia pushed the "out-of-Africa" date hypothesis of human migration back 50,000 years and added a possible path of migration from the African continent to the Arabian peninsula instead of through Europe. [3] [4]

The most popular OSL method is called single-aliquot regeneration (SAR). [5]

Related Research Articles

Cathodoluminescence

Cathodoluminescence is an optical and electromagnetic phenomenon in which electrons impacting on a luminescent material such as a phosphor, cause the emission of photons which may have wavelengths in the visible spectrum. A familiar example is the generation of light by an electron beam scanning the phosphor-coated inner surface of the screen of a television that uses a cathode ray tube. Cathodoluminescence is the inverse of the photoelectric effect, in which electron emission is induced by irradiation with photons.

Geiger–Müller tube

The Geiger–Müller tube or G–M tube is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It was named after Hans Geiger, who invented the principle in 1908, and Walther Müller, who collaborated with Geiger in developing the technique further in 1928 to produce a practical tube that could detect a number of different radiation types.

Thermoluminescence dating

Thermoluminescence dating (TL) is the determination, by means of measuring the accumulated radiation dose, of the time elapsed since material containing crystalline minerals was either heated or exposed to sunlight (sediments). As a crystalline material is heated during measurements, the process of thermoluminescence starts. Thermoluminescence emits a weak light signal that is proportional to the radiation dose absorbed by the material. It is a type of luminescence dating.

External beam radiotherapy Treatment of cancer with ionized radiation

External beam radiotherapy (EBRT) is the most common form of radiotherapy. The patient sits or lies on a couch and an external source of ionizing radiation is pointed at a particular part of the body. In contrast to brachytherapy and unsealed source radiotherapy, in which the radiation source is inside the body, external beam radiotherapy directs the radiation at the tumour from outside the body. Orthovoltage ("superficial") X-rays are used for treating skin cancer and superficial structures. Megavoltage X-rays are used to treat deep-seated tumours, whereas megavoltage electron beams are typically used to treat superficial lesions extending to a depth of approximately 5 cm. X-rays and electron beams are by far the most widely used sources for external beam radiotherapy. A small number of centers operate experimental and pilot programs employing beams of heavier particles, particularly protons, owing to the rapid dropoff in absorbed dose beneath the depth of the target.

Radiation dosimetry in the fields of health physics and radiation protection is the measurement, calculation and assessment of the ionizing radiation dose absorbed by an object, usually the human body. This applies both internally, due to ingested or inhaled radioactive substances, or externally due to irradiation by sources of radiation.

Scintillator Type of material

A scintillator is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate. Sometimes, the excited state is metastable, so the relaxation back down from the excited state to lower states is delayed. The process then corresponds to one of two phenomena: delayed fluorescence or phosphorescence. The correspondence depends on the type of transition and hence the wavelength of the emitted optical photon.

Thermoluminescence

Thermoluminescence is a form of luminescence that is exhibited by certain crystalline materials, such as some minerals, when previously absorbed energy from electromagnetic radiation or other ionizing radiation is re-emitted as light upon heating of the material. The phenomenon is distinct from that of black-body radiation.

Health physics

Health physics, also referred to as the science of radiation protection, is the profession devoted to protecting people and their environment from potential radiation hazards, while making it possible to enjoy the beneficial uses of radiation. Health physicists normally require a four-year bachelor’s degree and qualifying experience that demonstrates a professional knowledge of the theory and application of radiation protection principles and closely related sciences. Health physicists principally work at facilities where radionuclides or other sources of ionizing radiation are used or produced; these include research, industry, education, medical facilities, nuclear power, military, environmental protection, enforcement of government regulations, and decontamination and decommissioning—the combination of education and experience for health physicists depends on the specific field in which the health physicist is engaged.

The roentgen equivalent man is a CGS unit of equivalent dose, effective dose, and committed dose, which are measures of the health effect of low levels of ionizing radiation on the human body.

A semiconductor detector in ionizing radiation detection physics is a device that uses a semiconductor to measure the effect of incident charged particles or photons.

Kerma is an acronym for "kinetic energy released per unit mass", defined as the sum of the initial kinetic energies of all the charged particles liberated by uncharged ionizing radiation in a sample of matter, divided by the mass of the sample. It is defined by the quotient .

Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.

In the solid-state physics of semiconductors, carrier generation and carrier recombination are processes by which mobile charge carriers are created and eliminated. Carrier generation and recombination processes are fundamental to the operation of many optoelectronic semiconductor devices, such as photodiodes, light-emitting diodes and laser diodes. They are also critical to a full analysis of p-n junction devices such as bipolar junction transistors and p-n junction diodes.

Absolute dating is the process of determining an age on a specified chronology in archaeology and geology. Some scientists prefer the terms chronometric or calendar dating, as use of the word "absolute" implies an unwarranted certainty of accuracy. Absolute dating provides a numerical age or range in contrast with relative dating which places events in order without any measure of the age between events.

Luminescence dating refers to a group of methods of determining how long ago mineral grains were last exposed to sunlight or sufficient heating. It is useful to geologists and archaeologists who want to know when such an event occurred. It uses various methods to stimulate and measure luminescence.

Gamma ray Energetic electromagnetic radiation arising from radioactive decay of atomic nuclei

A gamma ray, or gamma radiation, is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves and so imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900 he had already named two less penetrating types of decay radiation alpha rays and beta rays in ascending order of penetrating power.

Quartz fiber dosimeter

A quartz fiber dosimeter, sometimes called a self indicating pocket dosimeter (SIPD) or self reading pocket dosimeter (SRPD) or quartz fibre electrometer (QFE), is a type of radiation dosimeter, a pen-like device that measures the cumulative dose of ionizing radiation received by the device, usually over one work period. It is clipped to a person's clothing, normally a breast pocket for whole body exposure, to measure the user's exposure to radiation.

X-ray detector

X-ray detectors are devices used to measure the flux, spatial distribution, spectrum, and/or other properties of X-rays.

Electron spin resonance dating, or ESR dating, is a technique used to date newly formed materials which radiocarbon dating cannot, like carbonates, tooth enamel, or materials that have been previously heated like igneous rock. Electron spin resonance dating was first introduced to the science community in 1975, when Motoji Ikeya dated a speleothem in Akiyoshi Cave, Japan. ESR dating measures the amount of unpaired electrons in crystalline structures that were previously exposed to natural radiation. The age of substance can be determined by measuring the dosage of radiation since the time of its formation.

Optically stimulated luminescence thermochronometry

Optically stimulated luminescence (OSL) thermochronometry is a dating method used to determine the time since quartz and/or feldspar began to store charge as it cools through the effective closure temperature. The closure temperature for quartz and Na-rich K-feldspar is 30-35 °C and 25 °

References

  1. Rhodes, Edward J. (2011). "Optically stimulated luminescence dating of sediments over the past 200,000 years". Annual Review of Earth and Planetary Sciences. 39: 461–488. Bibcode:2011AREPS..39..461R. doi:10.1146/annurev-earth-040610-133425.
  2. "Mungo Man older than thought". cogweb.ucla.edu.
  3. "Man Out Of Africa". Financial Times (requires registration). London. 2010-11-27.
  4. Schmid, Randolph E. (2011-01-27). "Humans may have left Africa earlier than thought". Archived from the original on January 3, 2016.
  5. Murray, A.S.; Wintle, A.G. (2000). "Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol". Radiation Measurements. 32 (1): 57–73. Bibcode:2000RadM...32...57M. doi:10.1016/S1350-4487(99)00253-X.