Generation time

Last updated

In population biology and demography, generation time is the average time between two consecutive generations in the lineages of a population. In human populations, generation time typically has ranged from 20 to 30 years, with wide variation based on gender and society. [1] [2] Historians sometimes use this to date events, by converting generations into years to obtain rough estimates of time.

Contents

Definitions and corresponding formulas

The existing definitions of generation time fall into two categories: those that treat generation time as a renewal time of the population, and those that focus on the distance between individuals of one generation and the next. Below are the three most commonly used definitions: [3] [4]

The time it takes for the population to grow by a factor of its net reproductive rate

The net reproductive rate is the number of offspring an individual is expected to produce during its lifetime (a net reproductive rate of 1 means that the population is at its demographic equilibrium). This definition envisions the generation time as a renewal time of the population. It justifies the very simple definition used in microbiology ("the time it takes for the population to double", or doubling time) since one can consider that during the exponential phase of bacterial growth mortality is very low and as a result a bacterium is expected to be replaced by two bacteria in the next generation (the mother cell and the daughter cell). If the population dynamic is exponential with a growth rate , that is,

,

where is the size of the population at time , then this measure of the generation time is given by

.

Indeed, is such that , i.e. .

The average difference in age between parent and offspring

This definition is a measure of the distance between generations rather than a renewal time of the population. Since many demographic models are female-based (that is, they only take females into account), this definition is often expressed as a mother-daughter distance (the "average age of mothers at birth of their daughters"). However, it is also possible to define a father-son distance (average age of fathers at the birth of their sons) or not to take sex into account at all in the definition. In age-structured population models, an expression is given by: [3] [4]

,

where is the growth rate of the population, is the survivorship function (probability that an individual survives to age ) and the maternity function (or birth function, or age-specific fertility). For matrix population models, there is a general formula: [5]

,

where is the discrete-time growth rate of the population, is its fertility matrix, its reproductive value (row-vector) and its stable stage distribution (column-vector); the are the elasticities of to the fertilities.

The age at which members of a given cohort are expected to reproduce

This definition is very similar to the previous one but the population need not be at its stable age distribution. Moreover, it can be computed for different cohorts and thus provides more information about the generation time in the population. This measure is given by: [3] [4]

.

Indeed, the numerator is the sum of the ages at which a member of the cohort reproduces, and the denominator is R0, the average number of offspring it produces.

Related Research Articles

<span class="mw-page-title-main">Inductance</span> Property of electrical conductors

Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the electric current, and follows any changes in the magnitude of the current. From Faraday's law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) (voltage) in the conductors, a process known as electromagnetic induction. This induced voltage created by the changing current has the effect of opposing the change in current. This is stated by Lenz's law, and the voltage is called back EMF.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. A list of the spherical harmonics is available in Table of spherical harmonics.

<span class="mw-page-title-main">Cross-ratio</span> An invariant under projective transformations

In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points A, B, C, D on a line, their cross ratio is defined as

In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates (q, p) → that preserves the form of Hamilton's equations. This is sometimes known as form invariance. Although Hamilton's equations are preserved, it need not preserve the explicit form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations and Liouville's theorem.

<span class="mw-page-title-main">Reciprocal lattice</span> Fourier transform of a real-space lattice, important in solid-state physics

In physics, the reciprocal lattice emerges from the Fourier transform of another lattice. The direct lattice or real lattice is a periodic function in physical space, such as a crystal system. The reciprocal lattice exists in the mathematical space of spatial frequencies, known as reciprocal space or k space, where refers to the wavevector.

In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.

In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid. For the case of a finite-dimensional graph, the discrete Laplace operator is more commonly called the Laplacian matrix.

In queueing theory, a discipline within the mathematical theory of probability, a Jackson network is a class of queueing network where the equilibrium distribution is particularly simple to compute as the network has a product-form solution. It was the first significant development in the theory of networks of queues, and generalising and applying the ideas of the theorem to search for similar product-form solutions in other networks has been the subject of much research, including ideas used in the development of the Internet. The networks were first identified by James R. Jackson and his paper was re-printed in the journal Management Science’s ‘Ten Most Influential Titles of Management Sciences First Fifty Years.’

In condensed matter physics and crystallography, the static structure factor is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation of scattering patterns obtained in X-ray, electron and neutron diffraction experiments.

In the mathematical discipline of graph theory, the expander walk sampling theorem intuitively states that sampling vertices in an expander graph by doing relatively short random walk can simulate sampling the vertices independently from a uniform distribution. The earliest version of this theorem is due to Ajtai, Komlós & Szemerédi (1987), and the more general version is typically attributed to Gillman (1998).

In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system that is perturbed from one with known eigenvectors and eigenvalues . This is useful for studying how sensitive the original system's eigenvectors and eigenvalues are to changes in the system. This type of analysis was popularized by Lord Rayleigh, in his investigation of harmonic vibrations of a string perturbed by small inhomogeneities.

<span class="mw-page-title-main">Normal-inverse-gamma distribution</span>

In probability theory and statistics, the normal-inverse-gamma distribution is a four-parameter family of multivariate continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and variance.

In the study of age-structured population growth, probably one of the most important equations is the Euler–Lotka equation. Based on the age demographic of females in the population and female births, this equation allows for an estimation of how a population is growing.

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson. The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume. It plays an important role for discrete-stable distributions.

<span class="mw-page-title-main">Lagrangian mechanics</span> Formulation of classical mechanics

In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his presentation to the Turin Academy of Science in 1760 culminating in his 1788 grand opus, Mécanique analytique.

Chapman–Enskog theory provides a framework in which equations of hydrodynamics for a gas can be derived from the Boltzmann equation. The technique justifies the otherwise phenomenological constitutive relations appearing in hydrodynamical descriptions such as the Navier–Stokes equations. In doing so, expressions for various transport coefficients such as thermal conductivity and viscosity are obtained in terms of molecular parameters. Thus, Chapman–Enskog theory constitutes an important step in the passage from a microscopic, particle-based description to a continuum hydrodynamical one.

<span class="mw-page-title-main">Marchenko–Pastur distribution</span> Distribution of singular values of large rectangular random matrices

In the mathematical theory of random matrices, the Marchenko–Pastur distribution, or Marchenko–Pastur law, describes the asymptotic behavior of singular values of large rectangular random matrices. The theorem is named after Soviet mathematicians Volodymyr Marchenko and Leonid Pastur who proved this result in 1967.

<span class="mw-page-title-main">Relativistic angular momentum</span> Angular momentum in special and general relativity

In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.

Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.

References

  1. Fenner, Jack N. (28 March 2005). "Cross-Cultural Estimation of the Human Generation Interval for Use in Genetics-Based Population Divergence Studies" (PDF). American Journal of Physical Anthropology. 128: 415–423. doi:10.1002/ajpa.20188 . Retrieved 15 May 2023.
  2. Wang, Richard J.; Al-Saffar, Samer I.; Rogers, Jeffrey; Hahn, Matthew W. (6 January 2023). "Human generation times across the past 250,000 years". Science Advances. 9 (1). doi:10.1126/sciadv.abm704 . Retrieved 15 May 2023.
  3. 1 2 3 Coale, A.J. (1972). The Growth and Structure of Human Populations . Princeton University Press. pp.  18–19. ISBN   9780691093574.
  4. 1 2 3 Charlesworth, B. (1994). Evolution in Age-structured Populations. Cambridge: University of Cambridge Press. pp. 28–30. ISBN   978-0-521-45967-9.
  5. Bienvenu, F.; Legendre, S. (2015). "A New Approach to the Generation Time in Matrix Population Models". The American Naturalist. 185 (6): 834–843. arXiv: 1307.6692 . doi:10.1086/681104. PMID   25996867. S2CID   3988634.