Oceanic crust

Last updated
Colors indicate the age of oceanic crust, wherein red indicates the youngest age, and blue indicates the oldest age. The lines represent tectonic plate boundaries. 2008 age of oceans plates.jpg
Colors indicate the age of oceanic crust, wherein red indicates the youngest age, and blue indicates the oldest age. The lines represent tectonic plate boundaries.

Oceanic crust is the uppermost layer of the oceanic portion of a tectonic plate. It is composed of the upper oceanic crust, with pillow lavas and a dike complex, and the lower oceanic crust, composed of troctolite, gabbro and ultramafic cumulates. [1] [2] The crust overlies the solidified and uppermost layer of the mantle. The crust and the solid mantle layer together constitute oceanic lithosphere.

Dike (geology) A sheet of rock that is formed in a fracture in a pre-existing rock body

A dike or dyke, in geological usage, is a sheet of rock that is formed in a fracture in a pre-existing rock body. Dikes can be either magmatic or sedimentary in origin. Magmatic dikes form when magma flows into a crack then solidifies as a sheet intrusion, either cutting across layers of rock or through a contiguous mass of rock. Clastic dikes are formed when sediment fills a pre-existing crack.

The lower oceanic crust is the lower part of the oceanic crust and represents the major part of it. It is generally located 4–8 km below the ocean floor and the major lithologies are mafic which derive from melts rising from the earth's mantle. This part of the oceanic crust is an important zone for processes such as melt accumulation and melt modification. And the recycling of this part of the oceanic crust, together with the upper mantle has been suggested as a significant source component for tholeiitic magmas in Hawaiian volcanoes. Although the lower oceanic crust builds the link between the mantle and the MORB, and can't be neglected for the understanding of MORB evolution, the complex processes operating in this zone remain unclear and there is an ongoing debate in Earth Sciences about this.


Troctolite is a mafic intrusive rock type. It consists essentially of major but variable amounts of olivine and calcic plagioclase along with minor pyroxene. It is an olivine-rich anorthosite, or a pyroxene-depleted relative of gabbro. However, unlike gabbro, no troctolite corresponds in composition to a partial melt of peridotite. Thus, troctolite is necessarily a cumulate of crystals that have fractionated from melt.


Oceanic crust is primarily composed of mafic rocks, or sima, which is rich in iron and magnesium. It is thinner than continental crust, or sial, generally less than 10 kilometers thick; however, it is denser, having a mean density of about 3.0 grams per cubic centimeter [3] as opposed to continental crust which has a density of about 2.7 grams per cubic centimeter. [4]

Mafic Silicate mineral or igneous rock that is rich in magnesium and iron

Mafic is an adjective describing a silicate mineral or igneous rock that is rich in magnesium and iron, and is thus a portmanteau of magnesium and ferric. Most mafic minerals are dark in color, and common rock-forming mafic minerals include olivine, pyroxene, amphibole, and biotite. Common mafic rocks include basalt, diabase and gabbro. Mafic rocks often also contain calcium-rich varieties of plagioclase feldspar.

Sima (geology) Rocks rich in magnesium silicate minerals

In geology, sima is the name for the lower layer of the Earth's crust. This layer is made of rocks rich in magnesium silicate minerals. Typically when the sima comes to the surface it is basalt, so sometimes this layer is called the 'basalt layer' of the crust. The sima layer is also called the 'basal crust' or 'basal layer' because it is the lowest layer of the crust. Because the ocean floors are mainly sima, it is also sometimes called the 'oceanic crust'.

Continental crust Layer of rock that forms the continents and continental shelves

Continental crust is the layer of igneous, sedimentary, and metamorphic rocks that forms the continents and the areas of shallow seabed close to their shores, known as continental shelves. This layer is sometimes called sial because its bulk composition is richer in silicates and aluminium minerals and has a lower density compared to the oceanic crust, called sima which is richer in magnesium silicate minerals and is denser. Changes in seismic wave velocities have shown that at a certain depth, there is a reasonably sharp contrast between the more felsic upper continental crust and the lower continental crust, which is more mafic in character.

The crust uppermost is the result of the cooling of magma derived from mantle material below the plate. The magma is injected into the spreading center, which consists mainly of a partly solidified crystal mush derived from earlier injections, forming magma lenses that are the source of the sheeted dikes that feed the overlying pillow lavas. [5] As the lavas cool they are, in most instances, modified chemically by seawater. [6] These eruptions occur mostly at mid-ocean ridges, but also at scattered hotspots, and also in rare but powerful occurrences known as flood basalt eruptions. But most magma crystallises at depth, within the lower oceanic crust. There, newly intruded magma can mix and react with pre-existing crystal mush and rocks. [7]

Crystal mush

A crystal mush is a magmatic body which contains a significant amount of crystals suspended in the liquid phase (melt). As the crystal fraction makes up less than half of the volume, there is no rigid large-scale three-dimensional network as in solids. As such, their rheological behavior mirrors that of absolute liquids. Within a single crystal mush, there is grading to a higher solid fraction towards the margins of the pluton while the liquid fraction increases towards the uppermost portions, forming a liquid lens at the top. Furthermore, depending on depth of placement crystal mushes are likely to contain a larger portion of crystals at greater depth in the crust than at shallower depth, as melting occurs from the adiabatic decompression of the magma as it rises, this is particularly the case for mid-oceanic ridges.

A flood basalt is the result of a giant volcanic eruption or series of eruptions that covers large stretches of land or the ocean floor with basalt lava. Flood basalt provinces such as the Deccan Traps of India are often called traps, after the Swedish word trappa, due to the characteristic stairstep geomorphology of many associated landscapes. Michael R. Rampino and Richard Stothers (1988) cited eleven distinct flood basalt episodes occurring in the past 250 million years, creating large volcanic provinces, plateaus, and mountain ranges. However, more have been recognized such as the large Ontong Java Plateau, and the Chilcotin Group, though the latter may be linked to the Columbia River Basalt Group. Large igneous provinces have been connected to five mass extinction events, and may be associated with bolide impacts.


Although a complete section of oceanic crust has not yet been drilled, geologists have several pieces of evidence that help them understand the ocean floor. Estimations of composition are based on analyses of ophiolites (sections of oceanic crust that are thrust onto and preserved on the continents), comparisons of the seismic structure of the oceanic crust with laboratory determinations of seismic velocities in known rock types, and samples recovered from the ocean floor by submersibles, dredging (especially from ridge crests and fracture zones) and drilling. [8] Oceanic crust is significantly simpler than continental crust and generally can be divided in three layers. According to mineral physics experiments, at lower mantle pressures, oceanic crust becomes denser than the surrounding mantle. [9]

Ophiolite Uplifted and exposed oceanic crust

An ophiolite is a section of the Earth's oceanic crust and the underlying upper mantle that has been uplifted and exposed above sea level and often emplaced onto continental crustal rocks. Ophio is Greek for snake, and lite means stone, after the green-color rocks that make up many ophiolites.

Submersible family of small watercraft able to navigate under water

A submersible is a small watercraft designed to operate underwater. The term submersible is often used to differentiate from other underwater vessels known as submarines, in that a submarine is a fully autonomous craft, capable of renewing its own power and breathing air, whereas a submersible is usually supported by a surface vessel, platform, shore team or sometimes a larger submarine. In common usage by the general public, however, the word submarine may be used to describe a craft that is by the technical definition actually a submersible. There are many types of submersibles, including both crewed and uncrewed craft, otherwise known as remotely operated vehicles or ROVs. Submersibles have many uses worldwide, such as oceanography, underwater archaeology, ocean exploration, adventure, equipment maintenance and recovery, and underwater videography.

Mid-ocean ridge An underwater mountain system formed by plate tectonic spreading

A mid-ocean ridge (MOR) is an underwater mountain system formed by plate tectonics. It consists of various mountains linked in chains, typically having a valley known as a rift running along its spine. This type of oceanic mountain ridge is characteristic of what is known as an 'oceanic spreading center', which is responsible for seafloor spreading. The production of new seafloor results from mantle upwelling in response to plate spreading; this isentropic upwelling solid mantle material eventually exceeds the solidus and melts. The buoyant melt rises as magma at a linear weakness in the oceanic crust, and emerges as lava, creating new crust upon cooling. A mid-ocean ridge demarcates the boundary between two tectonic plates, and consequently is termed a divergent plate boundary.

Sediment Particulate solid matter that is deposited on the surface of land

Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand and silt can be carried in suspension in river water and on reaching the sea bed deposited by sedimentation and if buried, may eventually become sandstone and siltstone.

Sediment transport The movement of solid particles, typically by gravity and fluid entrainment

Sediment transport is the movement of solid particles (sediment), typically due to a combination of gravity acting on the sediment, and/or the movement of the fluid in which the sediment is entrained. Sediment transport occurs in natural systems where the particles are clastic rocks, mud, or clay; the fluid is air, water, or ice; and the force of gravity acts to move the particles along the sloping surface on which they are resting. Sediment transport due to fluid motion occurs in rivers, oceans, lakes, seas, and other bodies of water due to currents and tides. Transport is also caused by glaciers as they flow, and on terrestrial surfaces under the influence of wind. Sediment transport due only to gravity can occur on sloping surfaces in general, including hillslopes, scarps, cliffs, and the continental shelf—continental slope boundary.

Turbidity current An underwater current of usually rapidly moving, sediment-laden water moving down a slope

A turbidity current is most typically an underwater current of usually rapidly moving, sediment-laden water moving down a slope; although current research (2018) indicates that water-saturated sediment may be the primary actor in the process.. Turbidity currents can also occur in other fluids besides water.


The most voluminous volcanic rocks of the ocean floor are the mid-oceanic ridge basalts, which are derived from low-potassium tholeiitic magmas. These rocks have low concentrations of large ion lithophile elements (LILE), light rare earth elements (LREE), volatile elements and other highly incompatible elements. There can be found basalts enriched with incompatible elements, but they are rare and associated with mid-ocean ridge hot spots such as surroundings of Galapagos Islands, the Azores and Iceland. [15]

Potassium Chemical element with atomic number 19

Potassium is a chemical element with symbol K and atomic number 19. Potassium metal is silvery- white in appearance, and soft enough to be cut with a knife, with little to no force.. Potassium metal reacts with atmospheric oxygen to form flaky white potassium oxide in only seconds of exposure. It was first isolated from potash, the ashes of plants, from which its name derives. In the periodic table, potassium is one of the alkali metals. All of the alkali metals have a single valence electron in the outer electron shell, which is easily removed to create an ion with a positive charge – a cation, which combines with anions to form salts. Potassium in nature occurs only in ionic salts. Elemental potassium is a soft silvery-white alkali metal that oxidizes rapidly in air and reacts vigorously with water, generating sufficient heat to ignite hydrogen emitted in the reaction, and burning with a lilac-colored flame. It is found dissolved in sea water, and is part of many minerals.

In petrology and geochemistry, an incompatible element is one that is unsuitable in size and/or charge to the cation sites of the minerals of which it is included. It is defined by the partition coefficient between rock-forming minerals and melt being much smaller than 1.

Hotspot (geology) Volcanic regions thought to be fed by underlying mantle that is anomalously hot compared with the surrounding mantle

In geology, the places known as hotspots or hot spots are volcanic regions thought to be fed by underlying mantle that is anomalously hot compared with the surrounding mantle. Their position on the Earth's surface is independent of tectonic plate boundaries. There are two hypotheses that attempt to explain their origins. One suggests that hotspots are due to mantle plumes that rise as thermal diapirs from the core–mantle boundary. The other hypothesis is that lithospheric extension permits the passive rising of melt from shallow depths. This hypothesis considers the term "hotspot" to be a misnomer, asserting that the mantle source beneath them is, in fact, not anomalously hot at all. Well-known examples include the Hawaii, Iceland and Yellowstone hotspots.

Prior to the Neoproterozoic Era 1000 Ma ago as world's oceanic crust was more mafic than present-days'. The more mafic nature of the crust meant that higher amounts of water molecules (OH) could be stored the altered parts of the crust. At subduction zones this mafic crust was prone to metamorphose into greenschist instead of blueschist at ordinary blueschist facies. [16]

Life cycle

Oceanic crust is continuously being created at mid-ocean ridges. As plates diverge at these ridges, magma rises into the upper mantle and crust. As it moves away from the ridge, the lithosphere becomes cooler and denser, and sediment gradually builds on top of it. The youngest oceanic lithosphere is at the oceanic ridges, and it gets progressively older away from the ridges. [17]

As the mantle rises it cools and melts, as the pressure decreases and it crosses the solidus. The amount of melt produced depends only on the temperature of the mantle as it rises. Hence most oceanic crust is the same thickness (7±1 km). Very slow spreading ridges (<1 cm·yr−1 half-rate) produce thinner crust (4–5 km thick) as the mantle has a chance to cool on upwelling and so it crosses the solidus and melts at lesser depth, thereby producing less melt and thinner crust. An example of this is the Gakkel Ridge under the Arctic Ocean. Thicker than average crust is found above plumes as the mantle is hotter and hence it crosses the solidus and melts at a greater depth, creating more melt and a thicker crust. An example of this is Iceland which has crust of thickness ~20 km. [18]

The age of the oceanic crust can be used to estimate the (thermal) thickness of the lithosphere, where young oceanic crust has not had enough time to cool the mantle beneath it, while older oceanic crust has thicker mantle lithosphere beneath it. [19] The oceanic lithosphere subducts at what are known as convergent boundaries. These boundaries can exist between oceanic lithosphere on one plate and oceanic lithosphere on another, or between oceanic lithosphere on one plate and continental lithosphere on another. In the second situation, the oceanic lithosphere always subducts because the continental lithosphere is less dense. The subduction process consumes older oceanic lithosphere, so oceanic crust is seldom more than 200 million years old. [20] The process of super-continent formation and destruction via repeated cycles of creation and destruction of oceanic crust is known as the Wilson cycle.

The oldest large-scale oceanic crust is in the west Pacific and north-west Atlantic — both are about up to 180-200 million years old. However, parts of the eastern Mediterranean Sea are remnants of the much older Tethys ocean, at about 270 and up to 340 million years old. [21] [22] [23]

Magnetic anomalies

The oceanic crust displays a pattern of magnetic lines, parallel to the ocean ridges, frozen in the basalt. A symmetrical pattern of positive and negative magnetic lines emanates from the mid-ocean ridge. [24] New rock is formed by magma at the mid-ocean ridges, and the ocean floor spreads out from this point. When the magma cools to form rock, its magnetic polarity is aligned with the then-current positions of the magnetic poles of the Earth. New magma then forces the older cooled magma away from the ridge. This process results in parallel sections of oceanic crust of alternating magnetic polarity.

See also


  1. Gillis et al (2014). Primitive layered gabbros from fast-spreading lower oceanic crust. Nature 505, 204-208
  2. Pirajno F. (2013). Ore Deposits and Mantle Plumes. Springer. p. 11. ISBN   9789401725026.
  3. Rogers, N.; Blake, S.; Burton, K. (2008-02-14). An introduction to our dynamic planet. Cambridge University Press. p. 19. ISBN   978-0-521-49424-3 . Retrieved January 2008.Check date values in: |accessdate= (help)
  4. Cogley 1984
  5. Sinton J.M.; Detrick R.S. (1992). "Mid‐ocean ridge magma chambers". Journal of Geophysical Research. 97 (B1): 197–216. Bibcode:1992JGR....97..197S. doi:10.1029/91JB02508.
  6. H. Elderfield (2006). The Oceans and Marine Geochemistry. Elsevier. pp. 182–. ISBN   978-0-08-045101-5.
  7. Lissenberg, C. J., MacLeod, C. J., Horward, K. A., and Godard, M. (2013). Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean). Earth Planet. Sci. Lett. 361, 436–447. doi: 10.1016/j.epsl.2012.11.012
  8. Kodaira, S., Noguchi, N., Takahashi, N., Ishizuka, O., & Kaneda, Y. (2010). Evolution from fore‐arc oceanic crust to island arc crust: A seismic study along the Izu‐Bonin fore arc. Journal of Geophysical Research: Solid Earth,115(B9), N/a.
  9. Li, M., & McNamara, A. (2013). The difficulty for subducted oceanic crust to accumulate at the Earth's core‐mantle boundary. Journal of Geophysical Research: Solid Earth,118(4), 1807-1816.
  10. Peter Laznicka (2 September 2010). Giant Metallic Deposits: Future Sources of Industrial Metals. Springer Science & Business Media. pp. 82–. ISBN   978-3-642-12405-1.
  11. D. R. Bowes (1989) The Encyclopedia of Igneous and Metamorphic Petrology, Van Nostrand Reinhold ISBN   0-442-20623-2
  12. Yildirim Dilek (1 January 2000). Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America. pp. 506–. ISBN   978-0-8137-2349-5.
  13. Gillis et al (2014). Primitive layered gabbros from fast-spreading lower oceanic crust. Nature 505, 204-208
  14. Jon Erickson (14 May 2014). Plate Tectonics: Unraveling the Mysteries of the Earth. Infobase Publishing. pp. 83–. ISBN   978-1-4381-0968-8.
  15. Clare P. Marshall, Rhodes W. Fairbridge (1999) Encyclopedia of Geochemistry, Kluwer Academic Publishers ISBN   0-412-75500-9
  16. Palin, Richard M.; White, Richard W. (2016). "Emergence of blueschists on Earth linked to secular changes in oceanic crust composition". Nature Geoscience. 9 (1): 60. Bibcode:2016NatGe...9...60P. doi:10.1038/ngeo2605.
  17. "Understanding plate motions [This Dynamic Earth, USGS]". pubs.usgs.gov. Retrieved 2017-04-16.
  18. C.M.R. Fowler (2005) The Solid Earth (2nd Ed.), Cambridge University Press ISBN   0-521-89307-0
  19. McKenzie, Dan; Jackson, James; Priestley, Keith (May 2005). "Thermal structure of oceanic and continental lithosphere". Earth and Planetary Science Letters. 233 (3–4): 337–349. doi:10.1016/j.epsl.2005.02.005.
  20. Condie, K.C. 1997. Plate Tectonics and Crustal Evolution (4th Edition). 288 page, Butterworth-Heinemann Ltd.
  21. Müller, R. Dietmar (April 2008). "Age, spreading rates, and spreading asymmetry of the world's ocean crust". Geochemistry, Geophysics, Geosystems. 9 (4): Q04006. Bibcode:2008GGG.....9.4006M. doi:10.1029/2007GC001743.
  22. Benson, Emily (15 August 2016). "World's oldest ocean crust dates back to ancient supercontinent". www.newscientist.com. New Scientist . Retrieved 11 September 2016.
  23. "Researcher uncovers 340 million year-old oceanic crust in the Mediterranean Sea using magnetic data". www.sciencedaily.com. Science Daily. 15 August 2016. Retrieved 11 September 2016.
  24. Pitman, W. C.; Herron, E. M.; Heirtzler, J. R. (1968-03-15). "Magnetic anomalies in the Pacific and sea floor spreading". Journal of Geophysical Research. 73 (6): 2069–2085. Bibcode:1968JGR....73.2069P. doi:10.1029/JB073i006p02069. ISSN   2156-2202.

Related Research Articles

Plate tectonics The scientific theory that describes the large-scale motions of Earths lithosphere

Plate tectonics is a scientific theory describing the large-scale motion of seven large plates and the movements of a larger number of smaller plates of the Earth's lithosphere, since tectonic processes began on Earth between 3 and 3.5 billion years ago. The model builds on the concept of continental drift, an idea developed during the first decades of the 20th century. The geoscientific community accepted plate-tectonic theory after seafloor spreading was validated in the late 1950s and early 1960s.

Magma Mixture of molten or semi-molten rock, volatiles and solids that is found beneath the surface of the Earth

Magma is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites. Besides molten rock, magma may also contain suspended crystals and gas bubbles. Magma is produced by melting of the mantle and/or the crust at various tectonic settings, including subduction zones, continental rift zones, mid-ocean ridges and hotspots. Mantle and crustal melts migrate upwards through the crust where they are thought to be stored in magma chambers or trans-crustal crystal-rich mush zones. During their storage in the crust, magma compositions may be modified by fractional crystallization, contamination with crustal melts, magma mixing, and degassing. Following their ascent through the crust, magmas may feed a volcano or solidify underground to form an intrusion. While the study of magma has historically relied on observing magma in the form of lava flows, magma has been encountered in situ three times during geothermal drilling projects—twice in Iceland, and once in Hawaii.

Crust (geology) The outermost solid shell of a rocky planet, dwarf planet, or natural satellite

In geology, the crust is the outermost solid shell of a rocky planet, dwarf planet, or natural satellite. It is usually distinguished from the underlying mantle by its chemical makeup; however, in the case of icy satellites, it may be distinguished based on its phase.

Lithosphere The rigid, outermost shell of a terrestrial-type planet or natural satellite that is defined by its rigid mechanical properties

A lithosphere is the rigid, outermost shell of a terrestrial-type planet, or natural satellite, that is defined by its rigid mechanical properties. On Earth, it is composed of the crust and the portion of the upper mantle that behaves elastically on time scales of thousands of years or greater. The outermost shell of a rocky planet, the crust, is defined on the basis of its chemistry and mineralogy.

Subduction A geological process at convergent tectonic plate boundaries where one plate moves under the other

Subduction is a geological process that takes place at convergent boundaries of tectonic plates where one plate moves under another and is forced to sink due to gravity into the mantle. Regions where this process occurs are known as subduction zones. Rates of subduction are typically in centimeters per year, with the average rate of convergence being approximately two to eight centimeters per year along most plate boundaries.

Convergent boundary Region of active deformation between colliding lithospheric plates

Convergent boundaries are areas on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other causing a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Benioff Zone. These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation. Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types.

Andesite An intermediate volcanic rock

Andesite ( or ) is an extrusive igneous, volcanic rock, of intermediate composition, with aphanitic to porphyritic texture. In a general sense, it is the intermediate type between basalt and rhyolite, and ranges from 57 to 63% silicon dioxide (SiO2) as illustrated in TAS diagrams. The mineral assemblage is typically dominated by plagioclase plus pyroxene or hornblende. Magnetite, zircon, apatite, ilmenite, biotite, and garnet are common accessory minerals. Alkali feldspar may be present in minor amounts. The quartz-feldspar abundances in andesite and other volcanic rocks are illustrated in QAPF diagrams.

Craton Old and stable part of the continental lithosphere

A craton is an old and stable part of the continental lithosphere, where the lithosphere consists of the Earth's two topmost layers, the crust and the uppermost mantle. Having often survived cycles of merging and rifting of continents, cratons are generally found in the interiors of tectonic plates. They are characteristically composed of ancient crystalline basement rock, which may be covered by younger sedimentary rock. They have a thick crust and deep lithospheric roots that extend as much as several hundred kilometres into the Earth's mantle.

Large igneous province Huge regional accumulation of igneous rocks

A large igneous province (LIP) is an extremely large accumulation of igneous rocks, including intrusive and extrusive, arising when magma travels through the crust towards the surface. The formation of LIPs is variously attributed to mantle plumes or to processes associated with divergent plate tectonics. The formation of some of the LIPs the past 500 million years coincide in time with mass extinctions and rapid climatic changes, which has led to numerous hypotheses about the causal relationships. LIPs are fundamentally different from any other currently active volcanoes or volcanic systems.

Rock cycle Transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous

The rock cycle is a basic concept in geology that describes the transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous. As the adjacent diagram illustrates, each of the types of rocks is altered or destroyed when it is forced out of its equilibrium conditions. An igneous rock such as basalt may break down and dissolve when exposed to the atmosphere, or melt as it is subducted under a continent. Due to the driving forces of the rock cycle, plate tectonics and the water cycle, rocks do not remain in equilibrium and are forced to change as they encounter new environments. The rock cycle is an illustration that explains how the three rock types are related to each other, and how processes change from one type to another over time. This cyclical aspect makes rock change a geologic cycle and, on planets containing life, a biogeochemical cycle.

Passive margin The transition between oceanic and continental lithosphere that is not an active plate margin

A passive margin is the transition between oceanic and continental lithosphere that is not an active plate margin. A passive margin forms by sedimentation above an ancient rift, now marked by transitional lithosphere. Continental rifting creates new ocean basins. Eventually the continental rift forms a mid-ocean ridge and the locus of extension moves away from the continent-ocean boundary. The transition between the continental and oceanic lithosphere that was originally created by rifting is known as a passive margin.

Harzburgite An ultramafic and ultrabasic mantle rock. Found in ophiolites.

Harzburgite, an ultramafic, igneous rock, is a variety of peridotite consisting mostly of the two minerals, olivine and low-calcium (Ca) pyroxene (enstatite); it is named for occurrences in the Harz Mountains of Germany. It commonly contains a few percent chromium-rich spinel as an accessory mineral. Garnet-bearing harzburgite is much less common, found most commonly as xenoliths in kimberlite.

Magmatism geological process

Magmatism is the emplacement of magma within and at the surface of the outer layers of a terrestrial planet, which solidifies as igneous rocks. It does so through magmatic activity or igneous activity, the production, intrusion and extrusion of magma or lava. Volcanism is the surface expression of magmatism.

Cobb hotspot

The Cobb Hotspot is a marine volcanic hotspot located at, which is 460 km (290 mi) west of Oregon and Washington, North America, in the Pacific Ocean. Over geologic time, the Earth's surface has migrated with respect to the hotspot through plate tectonics, creating the Cobb-Eicklberg seamount chain. The hotspot is currently collocated with the Juan de Fuca Ridge.

Non-volcanic passive margins (NVPM) constitute one end member of the transitional crustal types that lie beneath passive continental margins; the other end member being volcanic passive margins (VPM). Transitional crust welds continental crust to oceanic crust along the lines of continental break-up. Both VPM and NVPM form during rifting, when a continent rifts to form a new ocean basin. NVPM are different from VPM because of a lack of volcanism. Instead of intrusive magmatic structures, the transitional crust is composed of stretched continental crust and exhumed upper mantle. NVPM are typically submerged and buried beneath thick sediments, so they must be studied using geophysical techniques or drilling. NVPM have diagnostic seismic, gravity, and magnetic characteristics that can be used to distinguish them from VPM and for demarcating the transition between continental and oceanic crust.

Volcanic passive margins (VPM) and non-volcanic passive margins are the two forms of transitional crust that lie beneath passive continental margins that occur on Earth as the result of the formation of ocean basins via continental rifting. Initiation of igneous processes associated with volcanic passive margins occurs before and/or during the rifting process depending on the cause of rifting. There are two accepted models for VPM formation: hotspots/mantle plumes and slab pull. Both result in large, quick lava flows over a relatively short period of geologic time. VPM's progress further as cooling and subsidence begins as the margins give way to formation of normal oceanic crust from the widening rifts.

Igneous rock Rock formed through the cooling and solidification of magma or lava

Igneous rock, or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma or lava. The magma can be derived from partial melts of existing rocks in either a planet's mantle or crust. Typically, the melting is caused by one or more of three processes: an increase in temperature, a decrease in pressure, or a change in composition. Solidification into rock occurs either below the surface as intrusive rocks or on the surface as extrusive rocks. Igneous rock may form with crystallization to form granular, crystalline rocks, or without crystallization to form natural glasses. Igneous rocks occur in a wide range of geological settings: shields, platforms, orogens, basins, large igneous provinces, extended crust and oceanic crust.

Subduction zone metamorphism Changes of rock due to pressure and heat near a subduction zone

A subduction zone is a region of the earth's crust where one tectonic plate moves under another tectonic plate; oceanic crust gets recycled back into the mantle and continental crust gets created by the formation of arc magmas. Arc magmas account for more than 20% of terrestrially produced magmas and are produced by the dehydration of minerals within the subducting slab as it descends into the mantle and are accreted onto the base of the overriding continental plate. Subduction zones host a unique variety of rock types created by the high-pressure, low-temperature conditions a subducting slab encounters during its descent. The metamorphic conditions the slab passes through in this process creates and destroys water bearing (hydrous) mineral phases, releasing water into the mantle. This water lowers the melting point of mantle rock, initiating melting. Understanding the timing and conditions in which these dehydration reactions occur, is key to interpreting mantle melting, volcanic arc magmatism, and the formation of continental crust.