Global Ocean Data Analysis Project

Last updated

The Global Ocean Data Analysis Project (GLODAP) is a synthesis project bringing together oceanographic data, featuring two major releases as of 2018. The central goal of GLODAP is to generate a global climatology of the World Ocean's carbon cycle for use in studies of both its natural and anthropogenically forced states. GLODAP is funded by the National Oceanic and Atmospheric Administration, the U.S. Department of Energy, and the National Science Foundation.

Contents

The first GLODAP release (v1.1) was produced from data collected during the 1990s by research cruises on the World Ocean Circulation Experiment, Joint Global Ocean Flux Study and Ocean-Atmosphere Exchange Study programmes. The second GLODAP release (v2) extended the first using data from cruises from 2000 to 2013. The data are available both as individual "bottle data" from sample sites, and as interpolated fields on a standard longitude, latitude, depth grid.

Dataset

The GLODAPv1.1 climatology contains analysed fields of "present day" (1990s) dissolved inorganic carbon (DIC), alkalinity, carbon-14 (14C), CFC-11 and CFC-12. [1] The fields consist of three-dimensional, objectively-analysed global grids at 1° horizontal resolution, interpolated onto 33 standardised vertical intervals [2] from the surface (0 m) to the abyssal seafloor (5500 m). In terms of temporal resolution, the relative scarcity of the source data mean that, unlike the World Ocean Atlas, averaged fields are only produced for the annual time-scale. The GLODAP climatology is missing data in certain oceanic provinces including the Arctic Ocean, the Caribbean Sea, the Mediterranean Sea and Maritime Southeast Asia.

Additionally, analysis has attempted to separate natural from anthropogenic DIC, to produce fields of pre-industrial (18th century) DIC and "present day" anthropogenic CO2. This separation allows estimation of the magnitude of the ocean sink for anthropogenic CO2, and is important for studies of phenomena such as ocean acidification. [3] [4] However, as anthropogenic DIC is chemically and physically identical to natural DIC, this separation is difficult. GLODAP used a mathematical technique known as C* (C-star) [5] to deconvolute anthropogenic from natural DIC (there are a number of alternative methods). This uses information about ocean biogeochemistry and CO2 surface disequilibrium together with other ocean tracers including carbon-14, CFC-11 and CFC-12 (which indicate water mass age) to try to separate out natural CO2 from that added during the ongoing anthropogenic transient. The technique is not straightforward and has associated errors, although it is gradually being refined to improve it. Its findings are generally supported by independent predictions made by dynamic models. [3] [6]

The GLODAPv2 climatology largely repeats the earlier format, but makes use of the large number of observations of the ocean's carbon cycle made over the intervening period (2000–2013). [7] [8] The analysed "present-day" fields in the resulting dataset are normalised to year 2002. Anthropogenic carbon was estimated in GLODAPv2 using a "transit-time distribution" (TTD) method (an approach using a Green's function). [9] [8] In addition to updated fields of DIC (total and anthropogenic) and alkalinity, GLODAPv2 includes fields of seawater pH and calcium carbonate saturation state (Ω; omega). The latter is a non-dimensional number calculated by dividing the local carbonate ion concentration by the ambient saturation concentration for calcium carbonate (for the biomineral polymorphs calcite and aragonite), and relates to an oceanographic property, the carbonate compensation depth. Values of this below 1 indicate undersaturation, and potential dissolution, while values above 1 indicate supersaturation, and relative stability.

The following panels show sea surface concentrations of fields prepared by GLODAPv1.1. The "pre-industrial" is the 18th century, while "present-day" is approximately the 1990s.

Pre-industrial DIC WOA05 GLODAP pi DIC AYool.png
Pre-industrial DIC
"Present day" DIC WOA05 GLODAP pd DIC AYool.png
"Present day" DIC
"Present day" anthropogenic CO2 WOA05 GLODAP pd aco2 AYool.png
"Present day" anthropogenic CO2
"Present day" alkalinity WOA05 GLODAP pd ALK AYool.png
"Present day" alkalinity
"Present day" CFC-11 GLODAP sea-surf CFC11 AYool.png
"Present day" CFC-11
"Present day" CFC-12 GLODAP sea-surf CFC12 AYool.png
"Present day" CFC-12

The following panels show sea surface concentrations of fields prepared by GLODAPv2. The "pre-industrial" is the 18th century, while "present-day" is normalised to 2002. Note that these properties are shown in mass units (per kilogram of seawater) rather than the volume units (per cubic metre of seawater) used in the GLODAPv1.1 panels.

Surface ocean pre-industrial DIC concentration, GLODAPv2 Surface ocean pre-industrial DIC concentration, GLODAPv2.png
Surface ocean pre-industrial DIC concentration, GLODAPv2
Surface ocean present-day DIC concentration, GLODAPv2 Surface ocean present-day DIC concentration, GLODAPv2.png
Surface ocean present-day DIC concentration, GLODAPv2
Surface ocean anthropogenic CO2 concentration, GLODAPv2 Surface ocean anthropogenic CO2 concentration, GLODAPv2.png
Surface ocean anthropogenic CO2 concentration, GLODAPv2
Surface ocean present-day total alkalinity, GLODAPv2 Surface ocean present-day total alkalinity, GLODAPv2.png
Surface ocean present-day total alkalinity, GLODAPv2
Surface ocean present-day pH, GLODAPv2 Surface ocean present-day pH, GLODAPv2.png
Surface ocean present-day pH, GLODAPv2
Surface ocean present-day omega calcite, GLODAPv2 Surface ocean present-day omega calcite, GLODAPv2.png
Surface ocean present-day omega calcite, GLODAPv2

See also

Related Research Articles

<span class="mw-page-title-main">Carbon cycle</span> Natural processes of carbon exchange

The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth. Carbon is the main component of biological compounds as well as a major component of many minerals such as limestone. Along with the nitrogen cycle and the water cycle, the carbon cycle comprises a sequence of events that are key to make Earth capable of sustaining life. It describes the movement of carbon as it is recycled and reused throughout the biosphere, as well as long-term processes of carbon sequestration to and release from carbon sinks. Carbon sinks in the land and the ocean each currently take up about one-quarter of anthropogenic carbon emissions each year.

<span class="mw-page-title-main">Biological pump</span> Carbon capture process in oceans

The biological pump, also known as the marine carbon pump, is, in its simplest form, the ocean's biologically driven sequestration of carbon from the atmosphere and land runoff to the ocean interior and seafloor sediments. It is the part of the oceanic carbon cycle responsible for the cycling of organic matter formed mainly by phytoplankton during photosynthesis (soft-tissue pump), as well as the cycling of calcium carbonate (CaCO3) formed into shells by certain organisms such as plankton and mollusks (carbonate pump).

<span class="mw-page-title-main">Biogeochemical cycle</span> Chemical transfer pathway between Earths biological and non-biological parts

A biogeochemical cycle is the pathway by which a chemical substance cycles the biotic and the abiotic compartments of Earth. The biotic compartment is the biosphere and the abiotic compartments are the atmosphere, hydrosphere and lithosphere. There are biogeochemical cycles for chemical elements, such as for calcium, carbon, hydrogen, mercury, nitrogen, oxygen, phosphorus, selenium, iron and sulfur, as well as molecular cycles, such as for water and silica. There are also macroscopic cycles, such as the rock cycle, and human-induced cycles for synthetic compounds such as polychlorinated biphenyls (PCBs). In some cycles there are reservoirs where a substance can remain or be sequestered for a long period of time.

A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions.

<span class="mw-page-title-main">Solubility pump</span> Physico-chemical process which transports carbon

In oceanic biogeochemistry, the solubility pump is a physico-chemical process that transports carbon as dissolved inorganic carbon (DIC) from the ocean's surface to its interior.

<span class="mw-page-title-main">Continental shelf pump</span> Transport of carbon from shallow waters

In oceanic biogeochemistry, the continental shelf pump is proposed to operate in the shallow waters of the continental shelves, acting as a mechanism to transport carbon from surface waters to the interior of the adjacent deep ocean.

<span class="mw-page-title-main">Dissolved inorganic carbon</span> Sum of inorganic carbon species in a solution

Dissolved inorganic carbon (DIC) is the sum of the aqueous species of inorganic carbon in a solution. Carbon compounds can be distinguished as either organic or inorganic, and as dissolved or particulate, depending on their composition. Organic carbon forms the backbone of key component of organic compounds such as – proteins, lipids, carbohydrates, and nucleic acids.

<span class="mw-page-title-main">Ocean acidification</span> Climate change-induced decline of pH levels in the ocean

Ocean acidification is the reduction in the pH of the Earth’s ocean. This process takes place over periods lasting decades or more. Its main cause is the absorption of carbon dioxide (CO2) from the atmosphere. This, in turn, increases CO2 concentrations in the ocean. Between 23 and 30% of the CO2 that is in the atmosphere dissolves into oceans, rivers and lakes. Acidification is one of several effects of rising CO2 on the ocean. Other chemical changes to the ocean can also cause acidification. As the ocean absorbs CO2, seawater chemistry changes, which changes the living conditions of marine species. Many different species are affected, especially organisms that rely on calcium carbonate shells and skeletons, like mollusks, oysters and corals. Organisms like these struggle to build those parts of their anatomy when ocean waters have increased acidity.

The Hawaii Ocean Time-series (HOT) program is a long-term oceanographic study based at the University of Hawaii at Manoa. In 2015, the American Society for Microbiology designated the HOT Program's field site Station ALOHA a "Milestone in Microbiology", for playing "a key role in defining the discipline of microbial oceanography and educating the public about the vital role of marine microbes in global ecosystems."

Marine chemistry, also known as ocean chemistry or chemical oceanography, is influenced by plate tectonics and seafloor spreading, turbidity currents, sediments, pH levels, atmospheric constituents, metamorphic activity, and ecology. The field of chemical oceanography studies the chemistry of marine environments including the influences of different variables. Marine life has adapted to the chemistries unique to earth's oceans, and marine ecosystems are sensitive to changes in ocean chemistry.

The Revelle factor (buffer factor) is the ratio of instantaneous change in carbon dioxide (CO2) to the change in total dissolved inorganic carbon (DIC), and is a measure of the resistance to atmospheric CO2 being absorbed by the ocean surface layer. The buffer factor is used to examine the distribution of CO2 between the atmosphere and the ocean, and measures the amount of CO2 that can be dissolved in the mixed surface layer. It is named after the oceanographer Roger Revelle. The Revelle factor describes the ocean's ability to uptake atmospheric CO2, and is typically referenced in global carbon budget analysis and anthropogenic climate change studies.

<span class="mw-page-title-main">Oceanic carbon cycle</span> Ocean/atmosphere carbon exchange process

The oceanic carbon cycle is composed of processes that exchange carbon between various pools within the ocean as well as between the atmosphere, Earth interior, and the seafloor. The carbon cycle is a result of many interacting forces across multiple time and space scales that circulates carbon around the planet, ensuring that carbon is available globally. The Oceanic carbon cycle is a central process to the global carbon cycle and contains both inorganic carbon and organic carbon. Part of the marine carbon cycle transforms carbon between non-living and living matter.

<span class="mw-page-title-main">Fred T. Mackenzie</span> American sedimentary biogeochemist

Frederick T. Mackenzie is an American sedimentary and global biogeochemist. Mackenzie applies experimental and field data coupled to a sound theoretical framework to the solution of geological, geochemical, and oceanographic problems at various time and space scales.

<span class="mw-page-title-main">Marine biogeochemical cycles</span>

Marine biogeochemical cycles are biogeochemical cycles that occur within marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. These biogeochemical cycles are the pathways chemical substances and elements move through within the marine environment. In addition, substances and elements can be imported into or exported from the marine environment. These imports and exports can occur as exchanges with the atmosphere above, the ocean floor below, or as runoff from the land.

The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project is a large scale National Science Foundation funded research project based at Princeton University that started in September 2014. The project aims to increase the understanding of the Southern Ocean and the role it plays in factors such as climate, as well as educate new scientists with oceanic observation.

<span class="mw-page-title-main">Marine biogenic calcification</span>

Marine biogenic calcification is the process by which marine organisms such as oysters and clams form calcium carbonate. Seawater is full of dissolved compounds, ions and nutrients that organisms can use for energy and, in the case of calcification, to build shells and outer structures. Calcifying organisms in the ocean include molluscs, foraminifera, coccolithophores, crustaceans, echinoderms such as sea urchins, and corals. The shells and skeletons produced from calcification have important functions for the physiology and ecology of the organisms that create them.

<span class="mw-page-title-main">Silica cycle</span> Biogeochemical cycle

The silica cycle is the biogeochemical cycle in which biogenic silica is transported between the Earth's systems. Opal silica (SiO2) is a chemical compound of silicon, and is also called silicon dioxide. Silicon is considered a bioessential element and is one of the most abundant elements on Earth. The silica cycle has significant overlap with the carbon cycle (see carbonate–silicate cycle) and plays an important role in the sequestration of carbon through continental weathering, biogenic export and burial as oozes on geologic timescales.

<span class="mw-page-title-main">European Project on Ocean Acidification</span>

The European Project on Ocean Acidification (EPOCA) was Europe's first major research initiative and the first large-scale international research effort devoted to studying the impacts and consequences of ocean acidification. EPOCA was an EU FP7 Integrated Project active during four years, from 2008 to 2012.

<span class="mw-page-title-main">Particulate inorganic carbon</span>

Particulate inorganic carbon (PIC) can be contrasted with dissolved inorganic carbon (DIC), the other form of inorganic carbon found in the ocean. These distinctions are important in chemical oceanography. Particulate inorganic carbon is sometimes called suspended inorganic carbon. In operational terms, it is defined as the inorganic carbon in particulate form that is too large to pass through the filter used to separate dissolved inorganic carbon.

<span class="mw-page-title-main">Great Calcite Belt</span> High-calcite region of the Southern Ocean

The Great Calcite Belt (GCB) of the Southern Ocean is a region of elevated summertime upper ocean calcite concentration derived from coccolithophores, despite the region being known for its diatom predominance. The overlap of two major phytoplankton groups, coccolithophores and diatoms, in the dynamic frontal systems characteristic of this region provides an ideal setting to study environmental influences on the distribution of different species within these taxonomic groups.

References

  1. Key, R.M., Kozyr, A., Sabine, C.L., Lee, K., Wanninkhof, R., Bullister, J., Feely, R.A., Millero, F., Mordy, C. and Peng, T.-H. (2004). A global ocean carbon climatology: Results from GLODAP. Global Biogeochemical Cycles18, GB4031
  2. Standardised intervals are at 0, 10, 20, 30, 50, 75, 100, 125, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1750, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500 m
  3. 1 2 Orr, J. C. et al. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Archived June 25, 2008, at the Wayback Machine Nature437, 681–686
  4. Raven, J. A. et al. (2005). Ocean acidification due to increasing atmospheric carbon dioxide. Archived 2007-09-27 at the Wayback Machine Royal Society, London, UK
  5. Gruber, N., Sarmiento, J.L. and Stocker, T.F. (1996). An improved method for detecting anthropogenic CO2 in the oceans, Global Biogeochemical Cycles10:809– 837
  6. Matsumoto, K.; Gruber, N. (2005). "How accurate is the estimation of anthropogenic carbon in the ocean? An evaluation of the DC* method". Global Biogeochem. Cycles. 19 (3). Bibcode:2005GBioC..19.3014M. doi:10.1029/2004GB002397. S2CID   3468049.
  7. Olsen, A.; Key, R.M.; van Heuven, S.; Lauvset, S.K.; Velo, A.; Lin, X.; Schirnick, C.; Kozyr, A.; Tanhua, T.; Hoppema, M.; Jutterström, S.; Steinfeldt, R.; Jeansson, E.; Ishii, M.; Pérez, F.F.; Suzuki, T. (2016). "The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean". Earth System Science Data. 8 (2): 297–323. Bibcode:2016ESSD....8..297O. doi: 10.5194/essd-8-297-2016 .
  8. 1 2 Lauvset, S.K.; Key, R.M.; Olsen, A.; van Heuven, S.; Velo, A.; Lin, X.; Schirnick, C.; Kozyr, A.; Tanhua, T.; Hoppema, M.; Jutterström, S.; Steinfeldt, R.; Jeansson, E.; Ishii, M.; Pérez, F.F.; Suzuki, T.; Watelet, S. (2016). "A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2". Earth System Science Data. 8 (2): 325–340. Bibcode:2016ESSD....8..325L. doi: 10.5194/essd-8-325-2016 .
  9. Waugh, D.W.; Hall, T.M.; McNeil, B.I.; Key, R.; Matear, R.J. (2006). "Anthropogenic CO2 in the oceans estimated using transit-time distributions". Tellus. 58B (5): 376–390. Bibcode:2006TellB..58..376W. doi: 10.1111/j.1600-0889.2006.00222.x .