SOFAR channel

Last updated
Underwater sound speed as a function of depth. Data derived from readings taken north of Hawaii in the Pacific Ocean and sourced from the World Ocean Atlas, 2005 edition. Note the SOFAR channel axis at ca. 750 m depth, where sound speed is shown at its lowest. Underwater speed of sound.svg
Underwater sound speed as a function of depth. Data derived from readings taken north of Hawaii in the Pacific Ocean and sourced from the World Ocean Atlas, 2005 edition. Note the SOFAR channel axis at ca.750m depth, where sound speed is shown at its lowest.

The SOFAR channel (short for sound fixing and ranging channel), or deep sound channel (DSC), [1] is a horizontal layer of water in the ocean at which depth the speed of sound is at its minimum. The SOFAR channel acts as a waveguide for sound, and low frequency sound waves within the channel may travel thousands of miles before dissipating. An example was reception of coded signals generated by the Navy chartered ocean surveillance vessel Cory Chouest off Heard Island, located in the southern Indian Ocean (between Africa, Australia and Antarctica), by hydrophones in portions of all five major ocean basins and as distant as the North Atlantic and North Pacific. [2] [3] [4] [note 1]

Contents

This phenomenon is an important factor in ocean surveillance. [5] [6] [7] The deep sound channel was discovered and described independently by Maurice Ewing and J. Lamar Worzel at Columbia University and Leonid Brekhovskikh at the Lebedev Physics Institute in the 1940s. [8] [9] In testing the concept in 1944 Ewing and Worzel hung a hydrophone from Saluda, a sailing vessel assigned to the Underwater Sound Laboratory, with a second ship setting off explosive charges up to 900 nmi (1,000 mi; 1,700 km) away. [10] [11]

Principle

Acoustic pulses travel great distances in the ocean because they are trapped in an acoustic wave guide. This means that as acoustic pulses approach the surface they are turned back towards the bottom, and as they approach the ocean bottom they are turned back towards the surface. The ocean conducts sound very efficiently, particularly sound at low frequencies, i.e., less than a few hundred Hz Rays test.gif
Acoustic pulses travel great distances in the ocean because they are trapped in an acoustic wave guide. This means that as acoustic pulses approach the surface they are turned back towards the bottom, and as they approach the ocean bottom they are turned back towards the surface. The ocean conducts sound very efficiently, particularly sound at low frequencies, i.e., less than a few hundred Hz

Temperature is the dominant factor in determining the speed of sound in the ocean. In areas of higher temperatures (e.g. near the ocean surface), there is higher sound speed. Temperature decreases with depth, with sound speed decreasing accordingly until temperature becomes stable and pressure becomes the dominant factor. The axis of the SOFAR channel lies at the point of minimum sound speed at a depth where pressure begins dominating temperature and sound speed increases. This point is at the bottom of the thermocline and the top of the deep isothermal layer and thus has some seasonal variance. Other acoustic ducts exist, particularly in the upper mixed layer, but the ray paths lose energy with either surface or bottom reflections. In the SOFAR channel, low frequencies, in particular, are refracted back into the duct so that energy loss is small and the sound travels thousands of miles. [9] [12] [13] Analysis of Heard Island Feasibility Test data received by the Ascension Island Missile Impact Locating System hydrophones at an intermediate range of 9,200 km (5,700 mi; 5,000 nmi) from the source found surprisingly high signal-to-noise ratios, ranging from 19 to 30 dB, with unexpected phase stability and amplitude variability after a travel time of about 1 hour, 44 minutes and 17 seconds. [3]

Profile showing sound channel axis and bottom at critical depth. Where bottom profile intrudes into the sound channel propagation is bottom limited. PARKA I Track Acoustic Enfironment - Kaneohe-Alaska SOFAR Channel.png
Profile showing sound channel axis and bottom at critical depth. Where bottom profile intrudes into the sound channel propagation is bottom limited.

Within the duct sound waves trace a path that oscillates across the SOFAR channel axis so that a single signal will have multiple arrival times with a signature of multiple pulses climaxing in a sharply defined end. [10] [note 2] That sharply defined end representing a near axial arrival path is sometimes termed the SOFAR finale and the earlier ones the SOFAR symphony. [14] [15] Those effects are due to the larger sound channel in which ray paths are contained between the surface and critical depth. [note 3] Critical depth is the point below the sound speed minimum axis where sound speed increases to equal the maximum speed above the axis. Where bottom lies above critical depth the sound is attenuated, as is any ray path intersecting surface or bottom. [16] [17] [18] [note 4]

Bathymetry profile with SOFAR channel axis depth, Heard Island to Ascension Island. Bathymetry-SOFAR channel axis--Heard Island Feasibility Test.png
Bathymetry profile with SOFAR channel axis depth, Heard Island to Ascension Island.

The channel axis varies most with its location reaching the surface and disappearing at high latitudes (above about 60°N or below 60°S) but with sound then traveling in a surface duct. A 1980 report by Naval Ocean Systems Center gives examples in a study of a great circle acoustic path between Perth, Australia and Bermuda with data at eight locations along the path. At both Perth and Bermuda the sound channel axis occurs at a depth of around 1,200 m (3,937 ft). Where the path meets the Antarctic convergence at 52º south there is no deep sound channel but a 30 m (98 ft) in depth surface duct and a shallow sound channel at 200 m (656 ft). As the path turns northward, a station at 43º south, 16º east showed the profile reverting to the SOFAR type at 800 m (2,625 ft). [19] [20]

Applications

The first practical application began development during World War II when the United States Navy began experimenting and implementing the capability to locate the explosion of a SOFAR bomb used as a distress signal by downed pilots. The difference in arrival times of the source at an unknown location at known locations allowed computation of the source's general location. [10] The arrival times form hyperbolic lines of position similar to LORAN. The reverse, detection of timed signals from known shore positions at an unknown point, allowed calculation of the position at that point. That technique was given the name of SOFAR backwards: RAFOS. RAFOS is defined in the 1962 edition of The American Practical Navigator among the hyperbolic navigation systems. [10] [21] [22]

The early applications relied on fixed shore stations, often termed SOFAR stations. Several became acoustic research facilities as did the Bermuda SOFAR Station which was involved in the Perth to Bermuda experiment. [19] [20] The records of the Bermuda station are maintained by the Woods Hole Oceanographic Institute (WHOI). [23] In the recent past SOFAR sources were deployed for special purposes in the RAFOS application. One such system deployed bottom moored sources off Cape Hatteras, off Bermuda and one on a seamount to send three precisely timed signals a day to provide approximately five-kilometre (3.1 mi; 2.7 nmi) accuracy. [24]

The first application quickly became of intense interest to the Navy for reasons other than locating downed air crews. A Navy decision in 1949 led to studies by 1950 recommending the passive sonar potential of the SOFAR channel be exploited for the Navy's Anti-Submarine Warfare (ASW) effort. The recommendation included one that $10 million a year be spent on research and development of the system. By 1951 a test array had proven the concept and by 1952 additional stations were ordered for the Atlantic. The first major exploitation of the SOFAR channel was to ocean surveillance in a classified program that led to the Sound Surveillance System (SOSUS). That system remained classified from inception until the fixed systems were augmented by mobile arrays to become the Integrated Undersea Surveillance System with the mission and nature of the system declassified in 1991. [7] [25] [note 5]

Earthquake monitoring through the use of SOSUS after limited civilian access was granted to the Pacific Marine Environmental Laboratory (PMEL) of the National Oceanic and Atmospheric Administration in 1991 revealed ten times the number of offshore earthquakes with better localization than with land-based sensors. The SOSUS detection could sense earthquakes at about magnitude two rather than magnitude four. The system detected seafloor spreading and magma events in the Juan de Fuca Ridge in time for research vessels to investigate. As a result of that success, PMEL developed its own hydrophones for deployment worldwide to be suspended in the SOFAR channel by a float and anchor system. [26]

Other applications

In nature

Mysterious low-frequency sounds, attributed to fin whales (Balaenoptera physalus), are a common occurrence in the channel. Scientists believe fin whales may dive down to this channel and sing to communicate with other fin whales many kilometers away. [28]

The novel The Hunt for Red October describes the use of the SOFAR channel in submarine detection.

Footnotes

  1. Figure 1 of the reference "The Heard Island Feasibility Test" (Munk) shows ray paths to receiving locations. Table 1 lists the sites with one being a Canadian research vessel with a towed array off Cape Cod.
  2. The "History of the SOFAR Channel" reference has a recording and sonogram of the effect.
  3. The term also has a biological oceanography application.
  4. Figure 2 on page three of the Williams/Stephen/Smith reference is helpful in understanding critical depth, the SOFAR channel, the entire channel and the ray paths involved.
  5. It is not entirely coincidental that some of the SOSUS shore facilities, termed Naval Facilities (NAVFAC), were located in the vicinity of older SOFAR stations. For example Naval Facility Bermuda and Naval Facility Point Sur. The local acoustics were already well known.

See also

Related Research Articles

<span class="mw-page-title-main">Sonar</span> Acoustic sensing method

Sonar is a technique that uses sound propagation to navigate, measure distances (ranging), communicate with or detect objects on or under the surface of the water, such as other vessels.

<span class="mw-page-title-main">SOSUS</span> Cold War-era passive, fixed array undersea surveillance system

Sound Surveillance System (SOSUS) was the original name for a submarine detection system based on passive sonar developed by the United States Navy to track Soviet submarines. The system's true nature was classified with the name and acronym SOSUS classified as well. The unclassified name Project Caesar was used to cover the installation of the system and a cover story developed regarding the shore stations, identified only as a Naval Facility (NAVFAC), being for oceanographic research. The name changed to Integrated Undersea Surveillance System (IUSS) in 1985, as the fixed bottom arrays were supplemented by the mobile Surveillance Towed Array Sensor System (SURTASS) and other new systems. The commands and personnel were covered by the "oceanographic" term until 1991 when the mission was declassified. As a result, the commands, Oceanographic System Atlantic and Oceanographic System Pacific became Undersea Surveillance Atlantic and Undersea Surveillance Pacific, and personnel were able to wear insignia reflecting the mission.

<span class="mw-page-title-main">Naval Undersea Warfare Center</span> Warfare Center of the U.S. Navy

The Naval Undersea Warfare Center (NUWC) is the United States Navy's full-spectrum research, development, test and evaluation, engineering and fleet support center for submarines, autonomous underwater systems, and offensive and defensive weapons systems associated with undersea warfare. It is one of the corporate laboratories of the Naval Sea Systems Command. NUWC is headquartered in Newport, Rhode Island and has two major subordinate activities: Division Newport and Division Keyport in Keyport, Washington. NUWC also controls the Fox Island facility and Gould Island. It employs more than 4,400 civilian and military personnel, with budgets over $1 billion.

<span class="mw-page-title-main">Naval Facility Bermuda</span>

Naval Facility Bermuda, or NAVFAC Bermuda, was the operational shore terminus for one of the Atlantic Sound Surveillance System (SOSUS) array systems installed during the first phase of system installation and in commission from 1955 until 1992. The true surveillance mission was classified and covered by "oceanographic research" until the mission was declassified in 1991. The system's acoustic data was collected after the facility was decommissioned until the system was routed to the central processing facility, the Naval Ocean Processing Facility (NOPF), Dam Neck, Virginia in 1994.

<span class="mw-page-title-main">Ocean acoustic tomography</span> Technique used to measure temperatures and currents over large regions of the ocean

Ocean acoustic tomography is a technique used to measure temperatures and currents over large regions of the ocean. On ocean basin scales, this technique is also known as acoustic thermometry. The technique relies on precisely measuring the time it takes sound signals to travel between two instruments, one an acoustic source and one a receiver, separated by ranges of 100–5,000 kilometres (54–2,700 nmi). If the locations of the instruments are known precisely, the measurement of time-of-flight can be used to infer the speed of sound, averaged over the acoustic path. Changes in the speed of sound are primarily caused by changes in the temperature of the ocean, hence the measurement of the travel times is equivalent to a measurement of temperature. A 1 °C (1.8 °F) change in temperature corresponds to about 4 metres per second (13 ft/s) change in sound speed. An oceanographic experiment employing tomography typically uses several source-receiver pairs in a moored array that measures an area of ocean.

In oceanography, a sofar bomb, occasionally referred to as a sofar disc, is a long-range position-fixing system that uses impulsive sounds in the deep sound channel of the ocean to enable pinpointing of the location of ships or crashed planes. The deep sound channel is ideal for the device, as the minimum speed of sound at that depth improves the signal's traveling ability. A position is determined from the differences in arrival times at receiving stations of known geographic locations. The useful range from the signal sources to the receiver can exceed 3,000 miles (4,800 km).

<span class="mw-page-title-main">Project Artemis</span>

Project Artemis was a United States Navy acoustics research and development experiment from the late 1950s into the mid 1960s to test a potential low-frequency active sonar system for ocean surveillance. The at sea testing began in 1960 after research and development in the late 1950s. The project's test requirement was to prove detection of a submerged submarine at 500 nmi. The experiment, covering a number of years, involved a large active element and a massive receiver array.

USCGC <i>Yamacraw</i> (WARC-333)

USCGC Yamacraw (WARC-333) was a United States Coast Guard Cable Repair Ship. The ship was built for the Army Mine Planter Service as U. S. Army Mine Planter Maj. Gen. Arthur Murray (MP-9) delivered December 1942. On 2 January 1945 the ship was acquired by the Navy, converted to an Auxiliary Minelayer and commissioned USS Trapper (ACM-9) on 15 March 1945. Trapper was headed to the Pacific when Japan surrendered. After work in Japanese waters the ship headed for San Francisco arriving there 2 May 1946 for transfer to the Coast Guard.

USS <i>Viking</i> (ARS-1) Minesweeper of the United States Navy

USS Flamingo (AM-32) was a Lapwing-class minesweeper built for the United States Navy near the end of World War I. After service overseas clearing mines after the Armistice, the ship was laid up until 1922 when she was transferred to the United States Department of Commerce for use by the United States Coast and Geodetic Survey. Renamed USC&GS Guide, the ship operated as a survey vessel along the West Coast of the United States for 17 years, making significant contributions to navigation, hydrographic surveying, and oceanography. In June 1941, Guide was transferred back to the Navy, converted into a salvage ship, and renamed USS Viking (ARS-1). As Viking, she worked primarily from bases in California until 1953, when she was sold for scrapping.

USS <i>Aeolus</i> (ARC-3) Attack cargo ship converted into a cable repair ship

USS Aeolus (ARC-3) began service as USS Turandot (AKA-47), an Artemis-class attack cargo ship built by the Walsh-Kaiser Co., Inc. of Providence, Rhode Island. In 1954 she was converted into a cable repair ship to support Project Caesar, the unclassified name for installation of the Sound Surveillance System SOSUS. Aeolus was the first of two ships, the other being USS Thor (ARC-4), to be converted into cable ships. Aeolus performed cable duties for nearly thirty years, from 1955 to 1973 as a commissioned ship and from 1973 until 1985 as the civilian crewed USNS Aeolus (T-ARC-3) of the Military Sealift Command (MSC). The ship was retired in 1985 and sunk as an artificial reef in 1988.

RV <i>Sir Horace Lamb</i>

RV Sir Horace Lamb was a Navy owned former mine warfare vessel assigned to the Columbia University, Geophysical Field Station research facility in Bermuda for acoustic research operating from 1959 to 1976. The ship was the former USS Redpoll (AMS-57/YMS-294), a YMS-1-class minesweeper of the YMS-135 subclass built and commissioned as YMS-294 in 1943.

Geophysical MASINT is a branch of Measurement and Signature Intelligence (MASINT) that involves phenomena transmitted through the earth and manmade structures including emitted or reflected sounds, pressure waves, vibrations, and magnetic field or ionosphere disturbances.

RAFOS floats are submersible devices used to map ocean currents well below the surface. They drift with these deep currents and listen for acoustic "pongs" emitted at designated times from multiple moored sound sources. By analyzing the time required for each pong to reach a float, researchers can pinpoint its position by triangulation. The floats are able to detect the pongs at ranges of hundreds of kilometers because they generally target a range of depths known as the SOFAR channel, which acts as a waveguide for sound. The name "RAFOS" derives from the earlier SOFAR floats, which emitted sounds that moored receivers picked up, allowing real-time underwater tracking. When the transmit and receive roles were reversed, so was the name: RAFOS is SOFAR spelled backward. Listening for sound requires far less energy than transmitting it, so RAFOS floats are cheaper and longer lasting than their predecessors, but they do not provide information in real-time: instead they store it on board, and upon completing their mission, drop a weight, rise to the surface, and transmit the data to shore by satellite.

USS <i>Saluda</i> U.S. Navy sailing yacht

USS Saluda (IX-87) was a wooden-hulled, yawl-rigged yacht of the United States Navy.

USS <i>Allegheny</i> (ATA-179) Tugboat of the United States Navy

USS Allegheny (ATA-179) was an American Sotoyomo-class auxiliary fleet tug launched in 1944 and serving until 1968. She underwent conversion to a research vessel in 1952.

<span class="mw-page-title-main">Argus Island</span>

Argus Island was an acoustic research tower and platform located on Plantagenet Bank, a guyot about 30 miles southwest of the island of Bermuda. The tower was originally part of the facilities supporting Project Artemis and Project Trident under auspices of the Tudor Hill Laboratory, a facility of the US Navy's Underwater Sound Laboratory. Later the tower was used for additional acoustic experiments as well as oceanographic observations, wave height measurements, optical observations, air containment measurements and measurements of the effects of the ocean environment on the structure itself.

<span class="mw-page-title-main">Radio acoustic ranging</span> Method of accurately determining a ships position

Radio acoustic ranging, occasionally written as "radio-acoustic ranging" and sometimes abbreviated RAR, was a method for determining a ship's precise location at sea by detonating an explosive charge underwater near the ship, detecting the arrival of the underwater sound waves at remote locations, and radioing the time of arrival of the sound waves at the remote stations to the ship, allowing the ship's crew to use true range multilateration to determine the ship's position. Developed by the United States Coast and Geodetic Survey in 1923 and 1924 for use in accurately fixing the position of survey ships during hydrographic survey operations, it was the first navigation technique in human history other than dead reckoning that did not require visual observation of a landmark, marker, light, or celestial body, and the first non-visual means to provide precise positions. First employed operationally in 1924, radio acoustic ranging remained in use until 1944, when new radio navigation techniques developed during World War II rendered it obsolete.

<span class="mw-page-title-main">Naval Facility Point Sur</span> Military unit

Naval Facility Point Sur was one of 30 secret sites worldwide that were built during the Cold War to detect Soviet submarines. In 1958, the U.S. Navy built a Naval Facility (NAVFAC) ½ mile south of Point Sur on the Big Sur coast to provide submarine surveillance using the classified SOund SUrveillance System (SOSUS). The public was told the station was engaged in oceanographic research.

Low Frequency Analyzer and Recorder and Low Frequency Analysis and Recording (LOFAR) are the equipment and process respectively for presenting a visual spectrum representation of low frequency sounds in a time–frequency analysis. The process was originally applied to fixed surveillance passive antisubmarine sonar systems and later to sonobuoy and other systems. Originally the analysis was electromechanical and the display was produced on electrostatic recording paper, a Lofargram, with stronger frequencies presented as lines against background noise. The analysis migrated to digital and both analysis and display were digital after a major system consolidation into centralized processing centers during the 1990s.

The Missile Impact Location System or Missile Impact Locating System (MILS) is an ocean acoustic system designed to locate the impact position of test missile nose cones at the ocean's surface and then the position of the cone itself for recovery from the ocean bottom. The systems were installed in the missile test ranges managed by the U.S. Air Force.

References

  1. Navy Supplement to the DOD Dictionary of Military and Associated Terms (PDF). Department Of The Navy. June 2012. Archived (PDF) from the original on April 15, 2021. Retrieved 23 October 2021.
  2. Munk, Walter H.; Spindel, Robert C.; Baggeroer, Arthur; Birdsall, Theodore G. (20 May 1994). "The Heard Island Feasibility Test" (PDF). Journal of the Acoustical Society of America. Acoustical Society of America. 96 (4): 2330–2342. Bibcode:1994ASAJ...96.2330M. doi:10.1121/1.410105 . Retrieved 26 September 2020.
  3. 1 2 NOAA AOML (February 1993). Reception At Ascension Island, South Atlantic, of the Transmissions From The Heard Island Feasibility Test (NOAA Technical Memorandum ERL AOML-73) (PDF) (Report). Miami, Florida: National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory. Retrieved 26 September 2020.[ permanent dead link ]
  4. Military Sealift Command (2008). "MSC 2008 in Review — Ocean Surveillance Ships". Military Sealift Command. Archived from the original on 10 February 2018. Retrieved 28 September 2020.
  5. 1 2 Cone, Bruce E. (1 July 1976). The United States Air Force Eastern Test Range — Range Instrumentation Handbook (PDF). Patrick Air Force Base, Florida: Eastern Test Range, Directorate of Range Operations. p. 1-1. Archived (PDF) from the original on February 27, 2021. Retrieved 12 September 2020.
  6. De Geer, Lars-Erik; Wright, Christopher (September 22, 2019). "From Sheep to Sound Waves, the Data Confirms a Nuclear Test". Foreign Policy. Washington, DC: FP Group, Graham Holdings Company. Retrieved 23 September 2020.
  7. 1 2 "Integrated Undersea Surveillance System (IUSS) History 1950 - 2010". IUSS/CAESAR Alumni Association. Retrieved 25 September 2020.
  8. "William Maurice Ewing (1906-1974)" (PDF). Washington, D.C.: National Academy of Sciences. 1980: 136–137. Retrieved 25 September 2020.{{cite journal}}: Cite journal requires |journal= (help)
  9. 1 2 Kaharl, Victoria (March 1999). "Sounding Out the Ocean's Secrets" (PDF). Washington, D.C.: National Academy of Sciences. Retrieved 25 September 2020.{{cite journal}}: Cite journal requires |journal= (help)
  10. 1 2 3 4 "History of the SOFAR Channel". University of Rhode Island and Inner Space Center. 2020. Retrieved 26 September 2020.
  11. Naval History And Heritage Command. "Saluda". Dictionary of American Naval Fighting Ships. Naval History And Heritage Command. Retrieved 26 September 2020.
  12. Helber, Robert; Barron, Charlie N.; Carnes, Michael R.; Zingarelli, R. A. Evaluating the Sonic Layer Depth Relative to the Mixed Layer Depth (PDF) (Report). Stennis Space Center, MS: Naval Research Laboratory, Oceanography Division. Archived (PDF) from the original on September 11, 2021. Retrieved 26 September 2020.
  13. Thompson, Scott R. (December 2009). Sound Propagation Considerations for a Deep-Ocean Acoustic Network (PDF) (Master’s Thesis). Monterey, CA: Naval Postgraduate School. Archived (PDF) from the original on September 11, 2021. Retrieved 26 September 2020.
  14. Spindel, Robert C. (2004). "Fifteen years of long‐range propagation experiments in the North Pacific". The Journal of the Acoustical Society of America. 116 (4): 2608. Bibcode:2004ASAJ..116.2608S. doi:10.1121/1.4785400 . Retrieved 26 September 2020.
  15. Dzieciuch, Matthew; Munk, Walter; Rudnick, Daniel L. (2004). "Propagation of sound through a spicy ocean, the SOFAR overture". The Journal of the Acoustical Society of America. 116 (3): 1447–1462. Bibcode:2004ASAJ..116.1447D. doi:10.1121/1.1772397 . Retrieved 26 September 2020.
  16. Williams, Clare M.; Stephen, Ralph A.; Smith, Deborah K. (15 June 2006). "Hydroacoustic events located at the intersection of the Atlantis (30°N) and Kane (23°40′N) Transform Faults with the Mid‐Atlantic Ridge". Geochemistry, Geophysics, Geosystems. American Geophysical Union. 7 (6): 3–4. doi: 10.1029/2005GC001127 . S2CID   128431632.
  17. Fenner, Don F.; Cronin, William J. Jr. (1978). Bearing Stake Exercise: Sound Speed and Other Environmental Variability (PDF) (Report). NSTL Station, MS: Naval Ocean Research and Development Activity (NORDA). p. 3. Archived (PDF) from the original on March 4, 2016. Retrieved 26 September 2020.
  18. Baggeroer, Arthur B.; Scheer, Edward K. (2010). Oceanographic Variability and the Performance of Passive and Active Sonars in the Philippine Sea (PDF) (Report). Retrieved 27 September 2020.
  19. 1 2 Dushaw, Brian D (10 April 2012). The 1960 Perth to Bermuda antipodal acoustic propagation experiment: A measure of a half-century of ocean warming? (PDF) (Report). Retrieved 26 September 2020.
  20. 1 2 Northrop, J.; Hartdegen, C. (August 1980). Underwater Sound Propagation Paths Between Perth, Australia and Bermuda: Theory and Experiment (PDF) (Report). San Diego, CA: Naval Ocean Systems Center. pp. 3–6. Archived (PDF) from the original on November 9, 2020. Retrieved 24 September 2020.{{cite report}}: CS1 maint: date and year (link)
  21. Thomas, Paul D. (1960). Use of Artificial Satellites for Navigation and Oceanographic Surveys (Report). Washington, D.C.: U.S. Coast and Geodetic Survey. p. 7. Retrieved 26 September 2020.
  22. The American Practical Navigator. Washington, D.C.: U.S. Navy Hydrographic Office. 1962. p. 347.
  23. "Bermuda SOFAR Station Drum Records". WHOI Data Library and Archives. Retrieved 26 September 2020.
  24. Thomas, Rossby H. (1987). "The RAFOS Navigation System". Proceedings International Symposium on Marine Positioning. Dordrecht: Springer. p. 311. doi:10.1007/978-94-009-3885-4_30. ISBN   978-94-010-8226-6.
  25. Smith, Deborah H. (August 3, 2004). "Ears in the Ocean". Oceanus. Woods Hole Oceanographic Institution. Retrieved 26 September 2020.
  26. Dziak, Bob (August 2008). PMEL/Vents Ocean Acoustics (PDF) (Report). Pacific Marine Environmental Laboratory. Retrieved 26 September 2020.
  27. Lawrence, Martin W. (November 2004). "Acoustic Monitoring of the Global Ocean for the CTBT" (PDF). Retrieved 25 September 2020.{{cite journal}}: Cite journal requires |journal= (help)
  28. Orientation by Means of Long Range Acoustic Signaling in Baleen Whales, R. Payne, D. Webb, in Annals NY Acad. Sci., 188: 110–41 (1971)