Comprehensive Nuclear-Test-Ban Treaty Organization

Last updated

The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is an international organization that will be established upon the entry into force of the Comprehensive Nuclear-Test-Ban Treaty, a Convention that outlaws nuclear test explosions. Its seat will be in Vienna, Austria. The organization will be tasked with verifying the ban on nuclear tests and will operate therefore a worldwide monitoring system and may conduct on-site inspections. The Preparatory Commission for the CTBTO, and its Provisional Technical Secretariat, were established in 1997 and are headquartered in Vienna, Austria.

Contents

Status

The Comprehensive Nuclear-Test-Ban Treaty will enter into force 180 days after the Treaty has been ratified by 44 States, listed in Annex 2 of the Treaty, which were designated to have a nuclear reactor or at least some advanced level of nuclear technology. As of November 2023, 41 of these Annex 2 states have signed the treaty and 35 have ratified. India, North Korea and Pakistan have not signed or ratified the treaty; China, Egypt, Iran, Israel and the United States have signed but have not ratified; while Russia signed and ratified the treaty but subsequently withdrew its ratification prior to its entry into force. [1] The organization's scientific reporting claims 2.4 million persons will eventually die from cancers developed as a result of atmospheric atomic tests conducted between 1945 and 1980. [2]

Preparatory Commission

The Preparatory Commission was established in 1997 and is tasked with making preparations for effective implementation of the Treaty, in particular by establishing its verification regime. The main task is establishing and provisionally operating the 337-facility International Monitoring System (IMS), including its International Data Centre (IDC) and Global Communications Infrastructure (GCI). The Commission is tasked also with the development of operational manuals, including a manual to guide conduct of on-site inspections.

International Monitoring System (IMS) and Communications infrastructure

Radionuclide station on Schauinsland in Germany CTBTO Station on Schauinsland.JPG
Radionuclide station on Schauinsland in Germany

The IMS, when completed, will consist of

Data from all stations are transmitted to the CTBTO International Data Centre (IDC) in Vienna through a global private data network known as GCI, which is largely based on satellite (VSAT) links.

States Parties will have equal and direct access to all IMS data, raw or processed, for verification as well as civilian uses. The Preparatory Commission has started the building and verification of the system of which as of 2023 about 90% was operational. [3]

Consultation and Clarification (C&C)

States Parties to the Treaty are encouraged to conduct a Consultation and Clarification process (C&C) before requesting an on-site inspection. The state that has concerns about an ambiguous event should, whenever possible, make any effort to clarify it through consultations with the state in whose territory this event occurred, either directly or through the Organization.

On Site Inspection (OSI)

If an event detected by the IMS (or by other means) raises concerns about violation of the basic obligations of the CTBT, an OSI may be conducted to clarify whether a nuclear explosion has taken place. Such an inspection could take place only after entry into force of the Treaty, and would require agreement by at least 30 of the 51 members of the CTBTO's Executive Council. An inspection area of up to 1000 square kilometres would be searched by a team of inspectors (up to 40). Only State Parties to the Treaty may submit a request for an OSI.

When conducting an OSI, a number of detection techniques can be used. These techniques include position finding, visual observation, passive seismic measurements and radioactivity measurements including gamma radiation and radioactive noble gases such as argon-37 and isotopes of xenon for an initial period of up to 25 days. Further, for a continuation period of up to 60 days, more intrusive measurements can be used on-site including active and resonance seismic measurements as well as ground penetrating radar, gravity, and electric and magnetic field mappings. Argon-37 field measurement is a unique technology specially developed for the purpose of OSI. Drilling to obtain radioactive samples from a suspected underground explosion site is also allowed. Data collected from various methods have to be fused and interpreted for decision making purposes. An important task of the CTBTO is to explore how recent scientific and technical advances in these technologies can be applied to an OSI. [4]

Confidence-building measures

In addition to the IMS, C&C and OSI, the verification regime of the CTBT includes also the fourth element of Confidence-Building Measures. This requires States Parties to the treaty to notify the Organization, if possible in advance, of any chemical explosion using 300 tonnes or greater of TNT-equivalent blasting material to be detonated. This is required in order to contribute to the timely resolution of any compliance concerns and to assist in the calibration of IMS stations.

See also

Related Research Articles

<span class="mw-page-title-main">Comprehensive Nuclear-Test-Ban Treaty</span> 1996 treaty banning all nuclear weapons testing

The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is a multilateral treaty to ban nuclear weapons test explosions and any other nuclear explosions, for both civilian and military purposes, in all environments. It was adopted by the United Nations General Assembly on 10 September 1996, but has not entered into force, as eight specific nations have not ratified the treaty.

<span class="mw-page-title-main">Partial Nuclear Test Ban Treaty</span> 1963 international agreement

The Partial Test Ban Treaty (PTBT), formally known as the 1963 Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space and Under Water, prohibited all test detonations of nuclear weapons except for those conducted underground. It is also abbreviated as the Limited Test Ban Treaty (LTBT) and Nuclear Test Ban Treaty (NTBT), though the latter may also refer to the Comprehensive Nuclear-Test-Ban Treaty (CTBT), which succeeded the PTBT for ratifying parties.

<span class="mw-page-title-main">Infrasound</span> Vibrations with frequencies lower than 20 hertz

Infrasound, sometimes referred to as low frequency sound, describes sound waves with a frequency below the lower limit of human audibility. Hearing becomes gradually less sensitive as frequency decreases, so for humans to perceive infrasound, the sound pressure must be sufficiently high. The ear is the primary organ for sensing low sound, but at higher intensities it is possible to feel infrasound vibrations in various parts of the body.

<span class="mw-page-title-main">Nuclear weapons testing</span> Controlled detonation of nuclear weapons for scientific or political purposes

Nuclear weapons tests are experiments carried out to determine the performance, yield, and effects of nuclear weapons. Testing nuclear weapons offers practical information about how the weapons function, how detonations are affected by different conditions, and how personnel, structures, and equipment are affected when subjected to nuclear explosions. However, nuclear testing has often been used as an indicator of scientific and military strength. Many tests have been overtly political in their intention; most nuclear weapons states publicly declared their nuclear status through a nuclear test.

<span class="mw-page-title-main">Project Vela</span>

Project Vela was a United States Department of Defense project to monitor Soviet Union compliance with the 1963 Partial Test Ban Treaty. The treaty banned the testing of nuclear weapons in the atmosphere, in outer space, and underwater, but permitted underground testing.

The Treaty on the Limitation of Underground Nuclear Weapon Tests, also known as the Threshold Test Ban Treaty (TTBT), was signed in July 1974 by the United States and Soviet Union. It establishes a nuclear "threshold" by prohibiting nuclear tests of devices having a yield exceeding 150 kilotons after March 31, 1976.

<span class="mw-page-title-main">Air Force Technical Applications Center</span> Military unit

The Air Force Technical Applications Center (AFTAC), based at Florida's Patrick Space Force Base, is an Air Force surveillance organization assigned to the Sixteenth Air Force. Its mission is to monitor nuclear treaties of all applicable signatory countries. This is accomplished using seismic, hydroacoustic and satellite-detection systems alongside ground based and airborne materials collection systems.

An underwater explosion is a chemical or nuclear explosion that occurs under the surface of a body of water. While useful in anti-ship and submarine warfare, underwater bombs are not as effective against coastal facilities.

<span class="mw-page-title-main">2006 North Korean nuclear test</span> 2006 test detonation of a nuclear weapon in North Korea

The 2006 North Korean nuclear test was the detonation of a nuclear device conducted by North Korea on October 9, 2006.

<span class="mw-page-title-main">Underground nuclear weapons testing</span> Test detonation of nuclear weapons underground

Underground nuclear testing is the test detonation of nuclear weapons that is performed underground. When the device being tested is buried at sufficient depth, the nuclear explosion may be contained, with no release of radioactive materials to the atmosphere.

The International Noble Gas Experiment (INGE) was formed in 1999 as an informal expert's group of developers of radioactive xenon measurement systems for the International Monitoring System for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The group originally consisted of research and development groups from Germany, France, Russia, Sweden, and the United States, as well as personnel from Provisional Technical Secretariat of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization CTBTO.

National technical means of verification (NTM) are monitoring techniques, such as satellite photography, used to verify adherence to international treaties. The phrase first appeared, but was not detailed, in the Strategic Arms Limitation Treaty (SALT) between the US and USSR. At first, the phrase reflected a concern that the "Soviet Union could be particularly disturbed by public recognition of this capability [satellite photography]...which it has veiled.". In modern usage, the term covers a variety of monitoring technologies, including others used at the time of SALT I.

Timothy Hampton (1962–2009) was a specialist in weapons of mass destruction and an employee of the preparatory commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) in Vienna, Austria since 1998.

<span class="mw-page-title-main">Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization</span> Intergovernmental organization for nuclear-test banning

The Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization, or CTBTO Preparatory Commission, is an international organization based in Vienna, Austria, that is tasked with building up the verification regime of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). The organization was established by the States Signatories to the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in 1996.

Forensic seismology is the forensic use of the techniques of seismology to detect and study distant phenomena, particularly explosions, including those of nuclear weapons.

The Conrad Observatory is an underground geophysical research facility of the Central Institution for Meteorology and Geodynamics (ZAMG) in Austria. The basic task of the observatory is monitoring relevant physical parameters that are of decisive importance for our understanding of processes on and below earth. At the Conrad Observatory, seismic activities (seismology), variations in gravitational acceleration and mass changes (gravimetry), magnetic field variations, geodetic parameters, atmospheric waves, as well as meteorological data are continuously monitored.

<span class="mw-page-title-main">2013 North Korean nuclear test</span> Test detonation on 12 February 2013

On 12 February 2013, North Korean state media announced it had conducted an underground nuclear test, its third in seven years. A tremor that exhibited a nuclear bomb signature with an initial magnitude 4.9 was detected by the China Earthquake Networks Center, Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization and the United States Geological Survey. In response, Japan summoned an emergency United Nations meeting for 12 February and South Korea raised its military alert status. It is not known whether the explosion was nuclear, or a conventional explosion designed to mimic a nuclear blast; as of two days after the blast, Chinese, Japanese, and South Korean investigators had failed to detect any radiation.

<span class="mw-page-title-main">Lassina Zerbo</span> Former Prime Minister of Burkina Faso

Lassina Zerbo is a Burkinabé politician and scientist who served as the Prime Minister of Burkina Faso from 2021 to 2022. Prior to that he was the Executive Secretary of the Comprehensive Nuclear-Test-Ban Treaty Organization. On 24 January 2022, Zerbo was deposed in a coup d'état.

A nuclear detonation detection system (NDDS) is a device or a series of devices that are able to indicate, and pinpoint a nuclear explosion has occurred as well as the direction of the explosion. The main purpose of these devices or systems was to verify compliance of countries that signed nuclear treaties such as the Partial Test Ban treaty of 1963 (PTBT) and the Treaty of Tlatelolco.

References

  1. "Comprehensive Nuclear-Test-Ban Treaty". United Nations Treaty Collection. 2013-02-24. Archived from the original on 2017-06-21. Retrieved 2013-02-24.
  2. Child, David. (10 December 2017). "Nuclear weapons: In conversation with ICAN". Al Jazeera website Retrieved 10 December 2017.[ dubious ]
  3. "The International Monitoring System | CTBTO".
  4. "The Final Verification Measure". Archived from the original on 2012-05-22. Retrieved 2009-06-14.