Acoustic tag

Last updated

Acoustic tags are small sound-emitting devices that allow the detection and/or remote tracking of organisms in aquatic ecosystems. Acoustic tags are commonly used to monitor the behavior of fish. Studies can be conducted in lakes, rivers, tributaries, estuaries or at sea. Acoustic tag technology allows researchers to obtain locational data of tagged fish: depending on tag and receiver array configurations, researchers can receive simple presence/absence data, 2D positional data, or even 3D fish tracks in real-time with sub-meter resolutions.

Contents

Acoustic tags allow researchers to:

Sampling

Acoustic Tags transmit a signal made up of acoustic pulses or "pings" that sends location information about the tagged organism to the hydrophone receiver. By tying the received acoustic signature to the known type of programmed signal code, the specific tagged individual is identified. The transmitted signal can propagate up to 1 km (in freshwater)[ citation needed ]. Receivers can be actively held by a researcher ("Active Tracking") or affixed to specific locations ("Passive Tracking"). [1] Arrays of receivers can allow the triangulation of tagged individuals over many kilometers. Acoustic tags can have very long battery life - some tags last up to four years [ citation needed ].

Tags

Examples of acoustic tag sizes Example of Acoustic Telemetry Tags for Fisheries Research.jpg
Examples of acoustic tag sizes

Acoustic Tags are produced in many different shapes and sizes depending on the type of species being studied, or the type of environment in which the study is conducted. Sound parameters such as frequency and modulation method are chosen for optimal detectability, and signal level. For oceanic environments, frequencies less than 100 kHz range are often used[ citation needed ], while frequencies of several hundreds of kilohertz are more common in for studies in rivers and lakes[ citation needed ].

A typical Acoustic Tag consists of a piezoceramic transducer, drive/timing electronics, and a battery power source [ citation needed ]. Cylindrical or “tube” transducers are often used, which have metalization on the inner and outer walls of the structure. In normal operation, an alternating current (AC) electrical signal generated by the drive/timing electronics is impressed across the two metalization layers. This voltage creates stress in the material, which in turn cause the transducer to emit an acoustic signal or “ping”, which emanates outward from the surface of the tube. An acoustic “ping” can be detected by specialized receivers, and processed using advanced signal processing techniques to determine if a fish swimming into the reception area carries a specific acoustic tag.

Acoustic Tags are distinguished from other types of devices such as radio tags, or passive inductive transponder (PIT) tags, in that they can work in either salt or freshwater (RF and PIT tags perform poorly in saltwater) and do not depend on steering the fish in a particular path (PIT tags require the fish to be routed through a restricted sensing area).

Several different types of methods are used to attach the tag to an organism. In fish, tags are frequently embedded into the individual by cutting a small incision in the abdominal cavity of the fish (surgical implantation), or put down the gullet to embed the Acoustic Tag in the stomach (gastric implantation)[ citation needed ]. External attachment using adhesive compounds is typically not used for fish as scale fluids do not allow for any successful attachment to scale tissue. In other organisms tags are attached with heavy duty glues[ citation needed ].

Example of post surgical implantation of tag. Post Surgery.jpg
Example of post surgical implantation of tag.

Receivers

Illustration of juvenile salmonid travelling through a fish by-pass intake. Dam Fish Track.jpg
Illustration of juvenile salmonid travelling through a fish by-pass intake.
Acoustic tag tracking software screen of fish travelling toward a fish bypass intake (side view). AT Screen.jpg
Acoustic tag tracking software screen of fish travelling toward a fish bypass intake (side view).

By determining the sound's time of arrival at each hydrophone, the 3D position of the fish can be calculated. The hydrophone receiver picks up the sound signal and converts it to data that researchers use to plot the resulting tag positions in three dimensions, in real-time. [2] Using a post processing software, such as MarkTags, takes that data and delivers the result, the 3D track.

Applications

Rivers

Dams

At present, acoustic tags are most commonly used to monitor fish approaching diversion and guidance structures at hydropower dams. This allows hydropowered dam facilities, public utility districts, and municipalities to evaluate specific migration pathways used by the fish (most often salmon smolts), identify where fish mortality occurs and assess fish behavior in relation to hydrodynamic conditions and/or any other environmental parameters. Ultimately, working to improve bypass effectiveness and protect fish populations, Acoustic Tag Tracking Systems are a significant breakthrough in the preservation of migrating salmon populations. For an example of Acoustic Tag Tracking Systems at work on the Columbia River, see Grant County's most recent application or Chelan County's most recent application.

Acoustic tags have been employed to help public utility agencies, private firms, and state and federal agencies meet fisheries regulations as defined by the Federal Regulations and Oversight of Energy known as FERC.

Lakes

Ocean

Nearshore Ecosystem

Offshore Ecosystem

See also

Related Research Articles

<span class="mw-page-title-main">Sonar</span> Technique that uses sound propagation

Sonar is a technique that uses sound propagation to navigate, measure distances (ranging), communicate with or detect objects on or under the surface of the water, such as other vessels.

<span class="mw-page-title-main">Salmon</span> Family of fish related to trout

Salmon is the common name for several commercially important species of euryhaline ray-finned fish from the family Salmonidae, which are native to tributaries of the North Atlantic and North Pacific basin. Other closely related fish in the same family include trout, char, grayling, whitefish, lenok and taimen.

A hydrophone is a microphone designed to be used underwater for recording or listening to underwater sound. Most hydrophones are based on a piezoelectric transducer that generates an electric potential when subjected to a pressure change, such as a sound wave. Some piezoelectric transducers can also serve as a sound projector, but not all have this capability, and some may be destroyed if used in such a manner.

<span class="mw-page-title-main">Salmon run</span> Annual migration of salmon

A salmon run is an annual fish migration event where many salmonid species, which are typically hatched in fresh water and live most of the adult life downstream in the ocean, swim back against the stream to the upper reaches of rivers to spawn on the gravel beds of small creeks. After spawning, all species of Pacific salmon and most Atlantic salmon die, and the salmon life cycle starts over again with the new generation of hatchlings.

Steelhead, or occasionally steelhead trout, is the common name of the anadromous form of the coastal rainbow trout (Oncorhynchus m. irideus) or redband trout. Steelhead are native to cold-water tributaries of the Pacific basin in Northeast Asia and North America. Like other sea-run (anadromous) trout and salmon, steelhead spawn in freshwater, smolts migrate to the ocean to forage for several years and adults return to their natal streams to spawn. Steelhead are iteroparous, although survival is approximately 10–20%.

<span class="mw-page-title-main">Atlantic salmon</span> Species of fish

The Atlantic salmon is a species of ray-finned fish in the family Salmonidae. It is the third largest of the Salmonidae, behind Siberian taimen and Pacific Chinook salmon, growing up to a meter in length. Atlantic salmon are found in the northern Atlantic Ocean and in rivers that flow into it. Most populations are anadromous, hatching in streams and rivers but moving out to sea as they grow where they mature, after which the adults seasonally move upstream again to spawn.

<span class="mw-page-title-main">Chinook salmon</span> Species of fish

The Chinook salmon is the largest and most valuable species of Pacific salmon in North America, as well as the largest in the genus Oncorhynchus. Its common name is derived from the Chinookan peoples. Other vernacular names for the species include king salmon, Quinnat salmon, Tsumen, spring salmon, chrome hog, Blackmouth, and Tyee salmon. The scientific species name is based on the Russian common name chavycha (чавыча).

Puget Sound salmon recovery is a collective effort of federal, state and local authorities and non-profit coalitions of universities, scientists, business and industry aimed at restoring Pacific salmon and anadromous forms of Pacific trout (Oncorhynchus) within the Puget Sound region. The Puget Sound lies within the native range of the Pacific Salmon (Oncorhynchus) and two sea-run forms of Pacific trout, the coastal rainbow trout or steelhead and coastal cutthroat trout. Populations of Oncorhynchus have seen significant declines since the middle of the 19th century due to over fishing, habitat loss, pollution and disease. Salmon species residing in or migrating through the Puget Sound to spawning streams include Chum, Coho, Chinook, Sockeye, and Pink salmon. Pacific salmon require freshwater rivers for spawning and most major tributaries of the Puget Sound have salmon, steelhead and cutthroat trout spawning runs.

Biotelemetry involves the application of telemetry in biology, medicine, and other health care to remotely monitor various vital signs of ambulatory patients.

<span class="mw-page-title-main">Northern pikeminnow</span> Species of fish

The Northern pikeminnow, Columbia River dace or formerly Squawfish is a large member of the minnow family, Leuciscidae. This predatory freshwater fish is native to northwestern North America, ranging from the Nass River basin to the Columbia River basin. A good deal of concern has been expressed regarding the impact northern pikeminnow populations may have on salmon in Columbia and Snake river impoundments.

<span class="mw-page-title-main">Animal migration tracking</span> Used to study animals behavior in the wild

Animal migration tracking is used in wildlife biology, conservation biology, ecology, and wildlife management to study animals' behavior in the wild. One of the first techniques was bird banding, placing passive ID tags on birds legs, to identify the bird in a future catch-and-release. Radio tracking involves attaching a small radio transmitter to the animal and following the signal with a RDF receiver. Sophisticated modern techniques use satellites to track tagged animals, and GPS tags which keep a log of the animal's location. With the Emergence of IoT the ability to make devices specific to the species or what is to be tracked is possible. One of the many goals of animal migration research has been to determine where the animals are going; however, researchers also want to know why they are going "there". Researchers not only look at the animals' migration but also what is between the migration endpoints to determine if a species is moving to new locations based on food density, a change in water temperature, or other stimulus, and the animal's ability to adapt to these changes. Migration tracking is a vital tool in efforts to control the impact of human civilization on populations of wild animals, and prevent or mitigate the ongoing extinction of endangered species.

<span class="mw-page-title-main">Underwater acoustics</span> Study of the propagation of sound in water

Underwater acoustics or hydroacoustics is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries. The water may be in the ocean, a lake, a river or a tank. Typical frequencies associated with underwater acoustics are between 10 Hz and 1 MHz. The propagation of sound in the ocean at frequencies lower than 10 Hz is usually not possible without penetrating deep into the seabed, whereas frequencies above 1 MHz are rarely used because they are absorbed very quickly.

<span class="mw-page-title-main">Fisheries acoustics</span>

Fisheries acoustics includes a range of research and practical application topics using acoustical devices as sensors in aquatic environments. Acoustical techniques can be applied to sensing aquatic animals, zooplankton, and physical and biological habitat characteristics.

<span class="mw-page-title-main">Environmental issues with salmon</span>

Salmon population levels are of concern in the Atlantic and in some parts of the Pacific. Salmon are typically anadromous - they rear and grow in freshwater, migrate to the ocean to reach sexual maturity, and then return to freshwater to spawn. Determining how environmental stressors and climate change will affect these fisheries is challenging due to their lives split between fresh and saltwater. Environmental variables like warming temperatures and habitat loss are detrimental to salmon abundance and survival. Other human influenced effects on salmon like overfishing and gillnets, sea lice from farm raised salmon, and competition from hatchery released salmon have negative effects as well.

Carl Bernhard Schreck is an American biologist specializing in comparative endocrinology of fishes, best known for his contributions to our knowledge of stress in fish. Since 1975 he has been a professor at Oregon State University, holding the position of senior scientist and leader of the Oregon Cooperative Fish and Wildlife Research Unit.

<span class="mw-page-title-main">Steven J. Cooke</span> Canadian biologist

Steven J. Cooke is a Canadian biologist specializing in ecology and conservation physiology of fish. He is best known for his integrative work on fish physiology, behaviour, ecology, and human-dimensions to understand and solve complex environmental problems. He currently is a Canada Research Professor in Environmental Science and Biology at Carleton University and the Editor-in-Chief of the scientific journal Conservation Physiology.

The history of wildlife tracking technology involves the evolution of technologies that have been used to monitor, track, and locate many different types of wildlife. Many individuals have an interest in tracking wildlife, including biologists, scientific researchers, and conservationists. Biotelemetry is "the instrumental technique for gaining and transmitting information from a living organism and its environment to a remote observer".

<span class="mw-page-title-main">Coded wire tag</span> Device used to tag and track animals

A coded wire tag (CWT) is an animal tagging device, most often used for identifying batches of fish. It consists of a length of magnetized stainless steel wire 0.25 mm in diameter and typically 1.1 mm long. The tag is marked with rows of numbers denoting specific batch or individual codes. The tag is usually injected into the snout or cheek of a fish so that it may be tracked for research or fisheries management.

<span class="mw-page-title-main">Seismic data acquisition</span>

Seismic data acquisition is the first of the three distinct stages of seismic exploration, the other two being seismic data processing and seismic interpretation. Seismic acquisition requires the use of a seismic source at specified locations for a seismic survey, and the energy that travels within the subsurface as seismic waves generated by the source gets recorded at specified locations on the surface by what is known as receivers.

<span class="mw-page-title-main">Underwater survey</span> Inspection or measurement in or of an underwater environment

An underwater survey is a survey performed in an underwater environment or conducted remotely on an underwater object or region. Survey can have several meanings. The word originates in Medieval Latin with meanings of looking over and detailed study of a subject. One meaning is the accurate measurement of a geographical region, usually with the intention of plotting the positions of features as a scale map of the region. This meaning is often used in scientific contexts, and also in civil engineering and mineral extraction. Another meaning, often used in a civil, structural, or marine engineering context, is the inspection of a structure or vessel to compare actual condition with the specified nominal condition, usually with the purpose of reporting on the actual condition and compliance with, or deviations from, the nominal condition, for quality control, damage assessment, valuation, insurance, maintenance, and similar purposes. In other contexts it can mean inspection of a region to establish presence and distribution of specified content, such as living organisms, either to establish a baseline, or to compare with a baseline.

References

  1. Cooke, Steven J.; Midwood, Jonathan D.; Thiem, Jason D.; Klimley, Peter; Lucas, Martyn C.; Thorstad, Eva B.; Eiler, John; Holbrook, Chris; Ebner, Brendan C. (1 May 2013). "Tracking animals in freshwater with electronic tags: past, present and future". Animal Biotelemetry. 1: 5. doi: 10.1186/2050-3385-1-5 . S2CID   10991630.
  2. Cooke, Steven J.; Midwood, Jonathan D.; Thiem, Jason D.; Klimley, Peter; Lucas, Martyn C.; Thorstad, Eva B.; Eiler, John; Holbrook, Chris; Ebner, Brendan C. (1 May 2013). "Tracking animals in freshwater with electronic tags: past, present and future". Animal Biotelemetry. 1: 5. doi: 10.1186/2050-3385-1-5 . S2CID   10991630.