An algal bloom or algae bloom is a rapid increase or accumulation in the population of algae in fresh water or marine water systems. It is often recognized by the discoloration in the water from the algae's pigments. [1] The term algae encompasses many types of aquatic photosynthetic organisms, both macroscopic multicellular organisms like seaweed and microscopic unicellular organisms like cyanobacteria. [2] Algal bloom commonly refers to the rapid growth of microscopic unicellular algae, not macroscopic algae. [3] An example of a macroscopic algal bloom is a kelp forest. [2]
Algal blooms are the result of a nutrient, like nitrogen or phosphorus from various sources (for example fertilizer runoff or other forms of nutrient pollution), entering the aquatic system and causing excessive growth of algae. An algal bloom affects the whole ecosystem.
Consequences range from the benign feeding of higher trophic levels to more harmful effects like blocking sunlight from reaching other organisms, causing a depletion of oxygen levels in the water, and, depending on the organism, secreting toxins into the water. Blooms that can injure animals or the ecology, especially those blooms where toxins are secreted by the algae, are usually called "harmful algal blooms" (HAB), and can lead to fish die-offs, cities cutting off water to residents, or states having to close fisheries. The process of the oversupply of nutrients leading to algae growth and oxygen depletion is called eutrophication.
Algal and bacterial blooms have persistently contributed to mass extinctions driven by global warming in the geologic past, such as during the end-Permian extinction driven by Siberian Traps volcanism and the biotic recovery following the mass extinction. [4]
The term algal bloom is defined inconsistently depending on the scientific field and can range from a "minibloom"[ when defined as? ] of harmless algae to a large, harmful bloom event. [5] Since algae is a broad term including organisms of widely varying sizes, growth rates, and nutrient requirements, there is no officially recognized threshold level as to what is defined as a bloom. Because there is no scientific consensus, blooms can be characterized and quantified in several ways: measurements of new algal biomass, the concentration of photosynthetic pigment, quantification of the bloom's negative effect, or relative concentration of the algae compared to the rest of the microbial community. [5] For example, definitions of blooms have included when the concentration of chlorophyll exceeds 100 ug/L, [6] when the concentration of chlorophyll exceeds 5 ug/L, [7] when the species considered to be blooming exceeds concentrations of 1000 cells/mL, [8] and when the algae species concentration simply deviates from its normal growth. [9] [10]
Blooms are the result of a nutrient needed by the particular algae being introduced to the local aquatic system. This growth-limiting nutrient is typically nitrogen or phosphorus, but can also be iron, vitamins, or amino acids. [2] There are several mechanisms for the addition of these nutrients in water. In the open ocean and along coastlines, upwelling from both winds and topographical ocean floor features can draw nutrients to the photic, or sunlit zone of the ocean. [11] Along coastal regions and in freshwater systems, agricultural, city, and sewage runoff can cause algal blooms. [12]
Algal blooms, especially large algal bloom events, can reduce the transparency of the water and can discolor the water. [2] The photosynthetic pigments in the algal cells, like chlorophyll and photoprotective pigments, determine the color of the algal bloom. Depending on the organism, its pigments, and the depth in the water column, algal blooms can be green, red, brown, golden, and purple. [2] Bright green blooms in freshwater systems are frequently a result of cyanobacteria (colloquially known as "blue-green algae") such as Microcystis . [2] [13] Blooms may also consist of macroalgal (non-phytoplanktonic) species. These blooms are recognizable by large blades of algae that may wash up onto the shoreline. [14]
Once the nutrient is present in the water, the algae begin to grow at a much faster rate than usual. In a mini bloom, this fast growth benefits the whole ecosystem by providing food and nutrients for other organisms. [10]
Of particular note are the harmful algal blooms (HABs), which are algal bloom events involving toxic or otherwise harmful phytoplankton. Many species can cause harmful algal blooms. For example, Gymnodinium nagasakiense can cause harmful red tides, dinoflagellates Gonyaulax polygramma can cause oxygen depletion and result in large fish kills, cyanobacteria Microcystis aeruginosa can make poisonous toxins, and diatom Chaetoceros convolutus can damage fish gills. [15]
Freshwater algal blooms are the result of an excess of nutrients, particularly some phosphates. [19] [20] Excess nutrients may originate from fertilizers that are applied to land for agricultural or recreational purposes and may also originate from household cleaning products containing phosphorus. [21]
The reduction of phosphorus inputs is required to mitigate blooms that contain cyanobacteria. [22] In lakes that are stratified in the summer, autumn turnover can release substantial quantities of bio-available phosphorus potentially triggering algal blooms as soon as sufficient photosynthetic light is available. [23] Excess nutrients can enter watersheds through water runoff. [24] Excess carbon and nitrogen have also been suspected as causes. Presence of residual sodium carbonate acts as catalyst for the algae to bloom by providing dissolved carbon dioxide for enhanced photosynthesis in the presence of nutrients.[ citation needed ]
When phosphates are introduced into water systems, higher concentrations cause increased growth of algae and plants. Algae tend to grow very quickly under high nutrient availability, but each alga is short-lived, and the result is a high concentration of dead organic matter which starts to decompose. Natural decomposers present in the water begin decomposing the dead algae, consuming dissolved oxygen present in the water during the process. This can result in a sharp decrease in available dissolved oxygen for other aquatic life. Without sufficient dissolved oxygen in the water, animals and plants may die off in large numbers. This may also be known as a dead zone.[ citation needed ]
Blooms may be observed in freshwater aquariums when fish are overfed and excess nutrients are not absorbed by plants. These are generally harmful for fish, and the situation can be corrected by changing the water in the tank and then reducing the amount of food given.[ citation needed ]
Algal blooms in freshwater systems are not always caused by human contamination and have been observed to occur naturally in both eutrophic and oligotrophic lakes. Eutrophic lakes contain an abundance of nutrients such as nitrogen and phosphates which increase the likelihood for blooms. Oligotrophic lakes don't contain much of these nutrients. Oligotrophic lakes are defined by various degrees of scarcity. The trophic state index (TSI) measures nutrients in freshwater systems and a TSI under 30 defines oligotrophic waters. [25] However, algal blooms in oligotrophic bodies of water have also been observed. This is a result of cyanobacteria which cause blooms in eutrophic lakes and oligotrophic lakes despite the latter containing a lack of natural and man-made nutrients.
A cause for algal blooms in nutrient-lacking environments come in the form of nutrient uptake. Cyanobacteria have evolved to have better nutrient uptake in oligotrophic waters. [26] Cyanobacteria utilize nitrogen and phosphates in their biological processes. Because of this, cyanobacteria are known to be important in the nitrogen and phosphate fixing cycle in oligotrophic waters [26] . Cyanobacteria can fix nitrogen by accessing atmospheric nitrogen () that has been dissolved into water and transforming it into nitrogen accessible to other organisms. [26] This higher amount of nitrogen is then able to sustain large algae blooms in oligotrophic waters. [27]
Cyanobacteria are able to retain high phosphorus uptake in the absence of nutrients which help their success in oligotrophic environments. Cyanobacteria species such as D. lemmermannii are able to move between the hypolimnion which is rich in nutrients such as phosphates and the nutrient-poor metalimnion which lacks phosphates. [27] This causes phosphates to be brought up to the metalimnion and give organisms an abundance of phosphates, exacerbating the likelihood for algal blooms. [26]
Upwelling events happen when nutrients such as phosphates and nitrogen are moved from the nutrient dense hypolimnion to the nutrient poor metalimnion. [26] [27] This happens as result of geological processes such as seasonal overturn when lake surfaces freeze or melt, prompting mixing due to changing water densities mixing up the composition of limnion layers and mixing nutrients around the system. [28] This overabundance in nutrients leads to blooms. [27]
Turbulent storms churn the ocean in summer, adding nutrients to sunlit waters near the surface. This sparks a feeding frenzy each spring that gives rise to massive blooms of phytoplankton. Tiny molecules found inside these microscopic plants harvest vital energy from sunlight through photosynthesis. The natural pigments, called chlorophyll, allow phytoplankton to thrive in Earth's oceans and enable scientists to monitor blooms from space. Satellites reveal the location and abundance of phytoplankton by detecting the amount of chlorophyll present in coastal and open waters—the higher the concentration, the larger the bloom. Observations show blooms typically last until late spring or early summer, when nutrient stocks are in decline and predatory zooplankton start to graze. The visualization on the left immediately below uses NASA SeaWiFS data to map bloom populations. [16]
The NAAMES study conducted between 2015 and 2019 investigated aspects of phytoplankton dynamics in ocean ecosystems, and how such dynamics influence atmospheric aerosols, clouds, and climate. [30]
In France, citizens are requested to report coloured waters through the project PHENOMER. [31] This helps to understand the occurrence of marine blooms.[ citation needed ]
Wildfires can cause phytoplankton blooms via oceanic deposition of wildfire aerosols. [32]
A harmful algal bloom (HAB) is an algal bloom that causes negative impacts to other organisms via production of natural toxins, mechanical damage to other organisms, or by other means. The diversity of these HABs make them even harder to manage, and present many issues, especially to threatened coastal areas. [33] HABs are often associated with large-scale marine mortality events and have been associated with various types of shellfish poisonings. [34] Due to their negative economic and health impacts, HABs are often carefully monitored. [35] [36]
HAB has been proved to be harmful to humans. Humans may be exposed to toxic algae by direct consuming seafood containing toxins, swimming or other activities in water, and breathing tiny droplets in the air that contain toxins. [37] Because human exposure can take place by consuming seafood products that contain the toxins expelled by HAB algae, food-borne diseases are present and can affect the nervous, digestive, respiratory, hepatic, dermatological, and cardiac systems in the body. [38] Beach users have often experienced upper respiratory diseases, eye and nose irritation, fever, and have often needed medical care in order to be treated. Ciguatera fish poisoning (CFP) is very common from the exposure of algal blooms. Water-borne diseases are also present as our drinking waters can be contaminated by cyanotoxins.
If the HAB event results in a high enough concentration of algae the water may become discoloured or murky, varying in colour from purple to almost pink, normally being red or green. Not all algal blooms are dense enough to cause water discolouration.[ citation needed ]
Dinoflagellates are microbial eukaryotes that link bioluminesce and toxin production in algal blooms. [39] They use a luciferin-luciferase reaction to create a blue light emission glow. [40] There are seventeen major types of dinoflagellate toxins, in which the strains, Saxitoxin and Yessotoxin, are both bioluminescent and toxic. These two strains are found to have similar niches in coastal areas. A surplus of Dinoflagellates in the night time creates a blue-green glow, however, in the day, it presents as a red brown color which names algal blooms, Red Tides. Dinoflagellates have been reported to be the cause of seafood poisoning from the neurotoxins. [41]
There are three major categories for management of algal blooms consisting of mitigation, prevention, and control. [42] Within mitigation, routine monitoring programs are implemented for toxins in shellfish and an overall surveillance of the area. The HAB levels of the shellfish will be determined and can manage restrictions to keep contaminated shellfish off the food market. Moving fish pens away from algal blooms is also another form of mitigation. Within prevention, this category is less known but policy changes are implemented to control sewage and waste. Within control, there are mechanical, biological, chemical, genetic and environmental controls. Mechanical control involves dispersing clay into the water to aggregate with the HAB leading to less of these HAB to go through the process of sedimentation. Biological control varies largely and can be used through pheromones or releasing sterile males to reduce reproduction. Chemical control uses toxic chemical release. However, it may cause problems of mortality of other non targeted organisms. Genetic control involves genetically engineering species in their environmental tolerances and reproduction processes. However, there are problems of harming indigenous organisms. For environmental control, it can use water circulation and aeration.
Harmful algae blooms have a large effect on the Great Lakes St. Lawrence River Basin. Invasive zebra and quagga mussels are positively correlated with their impact on the environment. [43] These mussels increase the cycling of phosphorus which therefore increases harmful algae blooms in areas they are present. Harmful algae blooms continue to infect water supplies at the Binational Great Lakes Basin and due to the world’s recovery from the Covid-19 Pandemic, solving the issue has become a low priority. This economical problem has become part of politics in the United States, whereas in allied countries such as Canada there is low concern, as well.
The impact of harmful algae blooms on the environment have a substantial effect on marine life. For example, in August of 2024 the growth of the toxic algae, Pseudo-nitzschia, along California coasts were making sea lions sick and aggressive to beach goers. [44] Scientists claim this is a seasonal occurrence. The growth of Pseudo-nitzschia leads to the production of a dominic acid which accumulates in fishes such as sardines, anchovies, and squids. [45] This directly affects the food web and the primary food source of sea lions. Once the toxins are transferred via consumption, they can cause seizures, brain damage, and death to the animal. During this surge, people reported bites and unpredictable, aggressive behavior from the infected sea lions. [46] In this sickened state, the sea lions are scared and act out of fear in order to protect themselves. Pregnant sea lions are most vulnerable to toxic algae poisoning and are more likely to die from the effects. [45]
Eutrophication is a general term describing a process in which nutrients accumulate in a body of water, resulting in an increased growth of microorganisms that may deplete the oxygen of water. Eutrophication may occur naturally or as a result of human actions. Manmade, or cultural, eutrophication occurs when sewage, industrial wastewater, fertilizer runoff, and other nutrient sources are released into the environment. Such nutrient pollution usually causes algal blooms and bacterial growth, resulting in the depletion of dissolved oxygen in water and causing substantial environmental degradation.
Lake Okeechobee is the largest freshwater lake in the U.S. state of Florida. It is the eighth-largest natural freshwater lake among the 50 states of the United States and the second-largest natural freshwater lake contained entirely within the contiguous 48 states, after Lake Michigan.
Cyanotoxins are toxins produced by cyanobacteria. Cyanobacteria are found almost everywhere, but particularly in lakes and in the ocean where, under high concentration of phosphorus conditions, they reproduce exponentially to form blooms. Blooming cyanobacteria can produce cyanotoxins in such concentrations that they can poison and even kill animals and humans. Cyanotoxins can also accumulate in other animals such as fish and shellfish, and cause poisonings such as shellfish poisoning.
Algal mats are one of many types of microbial mat that forms on the surface of water or rocks. They are typically composed of blue-green cyanobacteria and sediments. Formation occurs when alternating layers of blue-green bacteria and sediments are deposited or grow in place, creating dark-laminated layers. Stromatolites are prime examples of algal mats. Algal mats played an important role in the Great Oxidation Event on Earth some 2.3 billion years ago. Algal mats can become a significant ecological problem, if the mats grow so expansive or thick as to disrupt the other underwater marine life by blocking the sunlight or producing toxic chemicals.
Paralytic shellfish poisoning (PSP) is one of the four recognized syndromes of shellfish poisoning, which share some common features and are primarily associated with bivalve mollusks. These shellfish are filter feeders and accumulate neurotoxins, chiefly saxitoxin, produced by microscopic algae, such as dinoflagellates, diatoms, and cyanobacteria. Dinoflagellates of the genus Alexandrium are the most numerous and widespread saxitoxin producers and are responsible for PSP blooms in subarctic, temperate, and tropical locations. The majority of toxic blooms have been caused by the morphospecies Alexandrium catenella, Alexandrium tamarense, Gonyaulax catenella and Alexandrium fundyense, which together comprise the A. tamarense species complex. In Asia, PSP is mostly associated with the occurrence of the species Pyrodinium bahamense.
Aphanizomenon flos-aquae is a diverse group of cyanobacteria with both toxic and non-toxic strains found in brackish and freshwater environments globally, including the Baltic Sea and the Great Lakes. Recent genome sequencing efforts have identified 18 distinct varieties of Aphanizomenon flos-aquae, revealing its genetic complexity.
Karenia brevis is a microscopic, single-celled, photosynthetic organism in the genus Karenia. It is a marine dinoflagellate commonly found in the waters of the Gulf of Mexico. It is the organism responsible for the "Florida red tides" that affect the Gulf coasts of Florida and Texas in the U.S., and nearby coasts of Mexico. K. brevis has been known to travel great lengths around the Florida peninsula and as far north as the Carolinas.
Aphanizomenon is a genus of cyanobacteria that inhabits freshwater lakes and can cause dense blooms. They are unicellular organisms that consolidate into linear (non-branching) chains called trichomes. Parallel trichomes can then further unite into aggregates called rafts. Cyanobacteria such as Aphanizomenon are known for using photosynthesis to create energy and therefore use sunlight as their energy source. Aphanizomenon bacteria also play a big role in the Nitrogen cycle since they can perform nitrogen fixation. Studies on the species Aphanizomenon flos-aquae have shown that it can regulate buoyancy through light-induced changes in turgor pressure. It is also able to move by means of gliding, though the specific mechanism by which this is possible is not yet known.
The Trophic State Index (TSI) is a classification system designed to rate water bodies based on the amount of biological productivity they sustain. Although the term "trophic index" is commonly applied to lakes, any surface water body may be indexed.
A harmful algal bloom (HAB), or excessive algae growth, is an algal bloom that causes negative impacts to other organisms by production of natural algae-produced toxins, water deoxygenation, mechanical damage to other organisms, or by other means. HABs are sometimes defined as only those algal blooms that produce toxins, and sometimes as any algal bloom that can result in severely lower oxygen levels in natural waters, killing organisms in marine or fresh waters. Blooms can last from a few days to many months. After the bloom dies, the microbes that decompose the dead algae use up more of the oxygen, generating a "dead zone" which can cause fish die-offs. When these zones cover a large area for an extended period of time, neither fish nor plants are able to survive. Harmful algal blooms in marine environments are often called "red tides".
Karenia is a genus that consists of unicellular, photosynthetic, planktonic organisms found in marine environments. The genus currently consists of 12 described species. They are best known for their dense toxic algal blooms and red tides that cause considerable ecological and economical damage; some Karenia species cause severe animal mortality. One species, Karenia brevis, is known to cause respiratory distress and neurotoxic shellfish poisoning (NSP) in humans.
Phycotoxins are complex allelopathic chemicals produced by eukaryotic and prokaryotic algal secondary metabolic pathways. More simply, these are toxic chemicals synthesized by photosynthetic organisms. These metabolites are not harmful to the producer but may be toxic to either one or many members of the marine food web. This page focuses on phycotoxins produced by marine microalgae; however, freshwater algae and macroalgae are known phycotoxin producers and may exhibit analogous ecological dynamics. In the pelagic marine food web, phytoplankton are subjected to grazing by macro- and micro-zooplankton as well as competition for nutrients with other phytoplankton species. Marine bacteria try to obtain a share of organic carbon by maintaining symbiotic, parasitic, commensal, or predatory interactions with phytoplankton. Other bacteria will degrade dead phytoplankton or consume organic carbon released by viral lysis. The production of toxins is one strategy that phytoplankton use to deal with this broad range of predators, competitors, and parasites. Smetacek suggested that "planktonic evolution is ruled by protection and not competition. The many shapes of plankton reflect defense responses to specific attack systems". Indeed, phytoplankton retain an abundance of mechanical and chemical defense mechanisms including cell walls, spines, chain/colony formation, and toxic chemical production. These morphological and physiological features have been cited as evidence for strong predatory pressure in the marine environment. However, the importance of competition is also demonstrated by the production of phycotoxins that negatively impact other phytoplankton species. Flagellates are the principle producers of phycotoxins; however, there are known toxigenic diatoms, cyanobacteria, prymnesiophytes, and raphidophytes. Because many of these allelochemicals are large and energetically expensive to produce, they are synthesized in small quantities. However, phycotoxins are known to accumulate in other organisms and can reach high concentrations during algal blooms. Additionally, as biologically active metabolites, phycotoxins may produce ecological effects at low concentrations. These effects may be subtle, but have the potential to impact the biogeographic distributions of phytoplankton and bloom dynamics.
A planktivore is an aquatic organism that feeds on planktonic food, including zooplankton and phytoplankton. Planktivorous organisms encompass a range of some of the planet's smallest to largest multicellular animals in both the present day and in the past billion years; basking sharks and copepods are just two examples of giant and microscopic organisms that feed upon plankton.
Pyrodinium is a genus of dinoflagellates. It was first discovered in 1906 in the waters around New Providence Island in the Bahamas. Pyrodinium is a monospecific species with two varieties, Pyrodinium bahamense var. compressum and Pyrodinium bahamanse var. bahamense. Pyrodinium is well known for producing Paralytic Shellfish Toxins (PSTs), e.g. saxitoxin, and the bioluminescence that lights up the bioluminescent bays in the Bahamas, Jamaica and Puerto Rico.
Alexandrium catenella is a species of dinoflagellates. It is among the group of Alexandrium species that produce toxins that cause paralytic shellfish poisoning, and is a cause of red tide. Alexandrium catenella is observed in cold, coastal waters, generally at temperate latitudes. These organisms have been found in the west coast of North America, Japan, Australia, and parts of South Africa.
Cochlodinium polykrikoides is a species of red tide producing marine dinoflagellates known for causing fish kills around the world, and well known for fish kills in marine waters of Southeast Asia. C. polykrikoides has a wide geographic range, including North America, Central America, Western India, Southwestern Europe and Eastern Asia. Single cells of this species are ovoidal in shape, 30-50μm in length and 25-30μm in width.
The Harmful Algal Bloom and Hypoxia Research and Control Amendments Act of 2014 is a U.S. public law that reauthorizes and modifies the Harmful Algal Bloom and Hypoxia Research and Control Act of 1998 and would authorize the appropriation of $20.5 million annually through 2018 for the National Oceanic and Atmospheric Administration (NOAA) to mitigate the harmful effects of algal blooms and hypoxia.
Gloeotrichia is a large (~2 mm) colonial genus of Cyanobacteria, belonging to the order Nostocales. The name Gloeotrichia is derived from the appearance of the filamentous body with prominent mucilage matrix. Found in lakes across the globe, gloeotrichia are notable for the important roles that they play in the nitrogen and phosphorus cycles. Gloeotrichia are also a genus of concern for lake managers, as they have been shown to push lakes towards eutrophication and to produce potentially deadly Microcystin-LR.
Dinoflagellates are eukaryotic plankton, existing in marine and freshwater environments. Previously, dinoflagellates had been grouped into two categories, phagotrophs and phototrophs. Mixotrophs, however include a combination of phagotrophy and phototrophy. Mixotrophic dinoflagellates are a sub-type of planktonic dinoflagellates and are part of the phylum Dinoflagellata. They are flagellated eukaryotes that combine photoautotrophy when light is available, and heterotrophy via phagocytosis. Dinoflagellates are one of the most diverse and numerous species of phytoplankton, second to diatoms.
Pseudo-nitzschia australis is a pennate diatom found in temperate and sub-tropic marine waters, such as off the coast of California and Argentina. This diatom is a Harmful Micro Algae that produces toxic effects on a variety of organisms through its production of domoic acid, a neurotoxin. Toxic effects have been observed in a variety of predatory organisms such as pelicans, sea lions, and humans. If exposed to a high enough dose, these predators will die as a result, and there is no known antidote. The potential indirect mortality associated with P. australis is of great concern to humans as toxic algae blooms, including blooms of P. australis, continue to increase in frequency and severity over recent years. Blooms of P. australis are believed to result from high concentrations of nitrates and phosphates in stream and river runoff, as well as coastal upwelling, which are also sources of other harmful algae blooms.
[B]ioavailable phosphorus – phosphorus that can be utilized by plants and bacteria – is only a fraction of the total, according to Michael Brett, a UW engineering professor ...
{{cite journal}}
: CS1 maint: multiple names: authors list (link)