Crustacean larva

Last updated
Larval and adult prawns
Shrimp nauplius.jpg
Nauplius larva

Crustaceans may pass through a number of larval and immature stages between hatching from their eggs and reaching their adult form. Each of the stages is separated by a moult, in which the hard exoskeleton is shed to allow the animal to grow. The larvae of crustaceans often bear little resemblance to the adult, and there are still cases where it is not known what larvae will grow into what adults. This is especially true of crustaceans which live as benthic adults (on the sea bed), more-so than where the larvae are planktonic, and thereby easily caught.

Contents

Many crustacean larvae were not immediately recognised as larvae when they were discovered, and were described as new genera and species. The names of these genera have become generalised to cover specific larval stages across wide groups of crustaceans, such as zoea and nauplius. Other terms described forms which are only found in particular groups, such as the glaucothoe of hermit crabs, or the phyllosoma of slipper lobsters and spiny lobsters.

Life cycle

At its most complete, a crustacean's life cycle begins with an egg, which is usually fertilised, but may instead be produced by parthenogenesis. This egg hatches into a pre-larva or pre-zoea. Through a series of moults, the young animal then passes through various zoea stages, followed by a megalopa or post-larva. This is followed by metamorphosis into an immature form, which broadly resembles the adult, and after further moults, the adult form is finally reached. Some crustaceans continue to moult as adults, while for others, the development of gonads signals the final moult.

Any organs which are absent from the adults do not generally appear in the larvae, although there are a few exceptions, such as the vestige of the fourth pereiopod in the larvae of Lucifer , and some pleopods in certain Anomura and crabs. [1] In a more extreme example, the Sacculina and other Rhizocephala have a distinctive nauplius larva with its complex body structure, but the adult form lacks many organs due to extreme adaptation to its parasitic life style.

Nauplius larva of a cyclops copepod.jpg
Nauplius
Cyclops.jpg
Adult

History of the study of crustacean larva

Antonie van Leeuwenhoek was the first person to observe the difference between larval crustaceans and the adults when he watched the eggs of Cyclops hatching in 1699. [1] Despite this, and other observations over the following decades, there was controversy among scientists about whether or not metamorphosis occurred in crustaceans, with conflicting observations presented, based on different species, some of which went through a metamorphosis, and some of which did not. In 1828 John Vaughan Thompson published a paper "On the Metamorphoses of the Crustacea, and on Zoea, exposing their singular structure and demonstrating they are not, as has been supposed, a peculiar Genus but the Larva of Crustacea!!" However his work was not believed due to crayfish not undergoing metamorphosis. [2] This controversy persisted until the 1840s, and the first descriptions of a complete series of larval forms were not published until the 1870s (Sidney Irving Smith on the American lobster in 1873; Georg Ossian Sars on the European lobster in 1875, and Walter Faxon on the shrimp Palaemonetes vulgaris in 1879). [1]

Larval stages

Anatomy of nauplii
EB1911 Crustacea Fig. 15.--Nauplius of Tetraclita porosa.jpg
Ventral view of a Tetraclita nauplius, showing cephalic appendages
Triops closeup.jpg
Close-up of an adult Triops (Notostraca), showing a persistent naupliar eye between the two compound eyes

Nauplius

The genus name Nauplius was published posthumously by Otto Friedrich Müller in 1785 for animals now known to be the larvae of copepods. The nauplius stage (plural: nauplii) is characterised by consisting of only three head segments, which are covered by a single carapace. The posterior body, when present, is unsegmented. Each head segment has a pair of appendages; the antennules, antennae, and mandibles. This larval stage has various lifestyles; some are benthic while others are swimmers, some are feeding while others are non-feeders (lecithotrophic). The nauplius is also the stage at which a simple, unpaired eye is present. The eye is known for that reason as the "naupliar eye", and is often absent in later developmental stages, although it is retained into the adult form in some groups, such as the Notostraca. [3] [4] Some crustacean groups lack this larval type, isopods being one example. [5]

Zoea

The genus Zoea was initially described by Louis Augustin Guillaume Bosc in 1802 for an animal now known to be the larva of a crab. [1] The zoea stage (plural: zoeas or zoeae), only found in members of Malacostraca, [5] is characterised by the use of the thoracic appendages for swimming and a large dorsal spine. [5]

Post-larva

The post-larva or Megalopae, also found exclusively in the Malacostraca, [5] is characterised by the use of abdominal appendages (pleopods) for propulsion. The post-larva is usually similar to the adult form, and many names have been erected for this stage in different groups. William Elford Leach erected the genus Megalopa in 1813 for a post-larval crab; a copepod post-larva is called a copepodite; a barnacle post-larva is called a cypris; a shrimp post-larva is called a parva; a hermit crab post-larva is called a glaucothoe; a spiny lobster / furry lobsters post-larva is called a puerulus and a slipper lobster post-larva is called a nisto.

Larvae of crustacean groups

Branchiopoda

In the Branchiopoda, the offspring hatch as a nauplius or metanauplius larva. [6]

Cephalocarida

In the Mediterranean horseshoe shrimp Lightiella magdalenina , the young experience 15 stages following the nauplius, termed metanaupliar stages, and two juvenile stages, with each of the first six stages adding two trunk segments, and the last four segments being added singly. [7]

Remipedia

The larvae of remipedes are lecithotrophic, consuming egg yolk rather than using external food sources. This characteristic, which is shared with malacostracan groups such as the Decapoda and Euphausiacea (krill) has been used to suggest a link between Remipedia and Malacostraca. [8]

Malacostraca

Amphipod hatchlings resemble the adults. [9]

Young isopod crustaceans hatch directly into a manca stage, which is similar in appearance to the adult. The lack of a free-swimming larval form has led to high rates of endemism in isopods, but has also allowed them to colonise the land, in the form of the woodlice.

Stomatopoda

The larvae of many groups of mantis shrimp are poorly known. In the superfamily Lysiosquilloidea, the larvae hatch as antizoea larvae, with five pairs of thoracic appendages, and develop into erichthus larvae, where the pleopods appear. In the Squilloidea, a pseudozoea larva develops into an alima larva, while in Gonodactyloidea, a pseudozoea develops into an erichthus. [10]

A single fossil stomatopod larva has been discovered, in the Upper Jurassic Solnhofen lithographic limestone. [11]

A nauplius of Euphausia pacifica hatching, emerging backwards from the egg Nauplius Hatching.jpg
A nauplius of Euphausia pacifica hatching, emerging backwards from the egg

Krill

The life cycle of krill is relatively well understood, although there are minor variations in detail from species to species. After hatching, the larvae go through several stages called nauplius, pseudometanauplius, metanauplius, calyptopsis and furcilia stages, each of which is sub-divided into several sub-stages. The pseudometanauplius stage is exclusive to the so-called "sac-spawners". Until the metanauplius stage, the larvae are reliant on the yolk reserves, but from the calyptopsis stage, they begin to feed on phytoplankton. During the furcilia stages, segments with pairs of swimmerets are added, beginning at the frontmost segments, with each new pair only becoming functional at the next moult. After the final furcilia stage, the krill resembles the adult.

Eggs being brooded by a female Orconectes obscurus crayfish: such large eggs are often indicative of abbreviated development. Eggs.on.orconectes.obscurus.jpg
Eggs being brooded by a female Orconectes obscurus crayfish: such large eggs are often indicative of abbreviated development.

Decapoda

Zoea larva of a European lobster Homarus gammarus zoea.jpg
Zoea larva of a European lobster

Apart from the prawns of the suborder Dendrobranchiata, all decapod crustaceans brood their eggs on the female's pleopods. This has resulted in development in decapod crustaceans being generally abbreviated. [1] There are at most nine larval stages in decapods, as in krill, and both decapod nauplii and krill nauplii often lack mouthparts and survive on nutrients supplied in the egg yolk (lecithotrophy). In species with normal development, eggs are roughly 1% of the size of the adult; in species with abbreviated development, and therefore more yolk in the eggs, the eggs may reach 1/9 of the adult's size. [1]

The post-larva of shrimp is called parva, after the species Acanthephyra parva described by Henri Coutière, but which was later recognised as the larva of Acanthephyra purpurea . [12]

In the marine lobsters, there are three larval stages, all similar in appearance.

Freshwater crayfish embryos differ from those of other crustaceans in having 40 ectoteloblast cells, rather than around 19. [13] The larvae show abbreviated development, and hatch with a full complement of adult appendages with the exceptions of the uropods and the first pair of pleopods. [1]

A phyllosoma larva of the spiny lobster Palinurus elephas, from Ernst Haeckel's Kunstformen der Natur Haeckel Phyllosoma.jpg
A phyllosoma larva of the spiny lobster Palinurus elephas , from Ernst Haeckel's Kunstformen der Natur

The larvae of the Achelata (slipper lobsters, spiny lobsters and furry lobsters) are unlike any other crustacean larvae. The larvae are known as phyllosoma , after the genus Phyllosoma erected by William Elford Leach in 1817. They are flattened and transparent, with long legs and eyes on long eyestalks. After passing through 8–10 phyllosoma stages, the larva undergoes "the most profound transformation at a single moult in the Decapoda", when it develops into the so-called puerulus stage, which is an immature form resembling the adult animal. [1]

The members of the traditional infraorder Thalassinidea can be divided into two groups on the basis of their larvae. According to Robert Gurney, [1] the "homarine group" comprises the families Axiidae and Callianassidae, while the "anomuran group" comprises the families Laomediidae and Upogebiidae. This split corresponds with the division later confirmed with molecular phylogenetics. [14]

Among the Anomura, there is considerable variation in the number of larval stages. In the South American freshwater genus Aegla , the young hatch from the eggs in the adult form. [1] Squat lobsters pass through four, or occasionally five, larval states, which have a long rostrum, and a spine on either side of the carapace; the first post-larva closely resembles the adult. [1] Porcelain crabs have two or three larval stages, in which the rostrum and the posterior spine on the carapace are "enormously long". [1] Hermit crabs pass through around four larval stages. The post-larva is known as the glaucothoe, after a genus named by Henri Milne-Edwards in 1830. [1] The glaucothoe is 3 millimetres (0.12 in) long in Pagurus longicarpus , but glaucothoe larvae up to 20 mm (0.79 in) are known, and were once thought to represent animals which had failed to develop correctly. [1] Like the preceding stages, the glaucothoe is symmetrical, and although the glaucothoe begins as a free-swimming form, it often acquires a gastropod shell to live in; the coconut crab, Birgus latro, always carries a shell when the immature animal comes ashore, but this is discarded later. [1]

Although they are classified as crabs, the larvae of Dromiacea are similar to those of the Anomura, which led many scientists to place dromiacean crabs in the Anomura, rather than with the other crabs. Apart from the Dromiacea, all crabs share a similar and distinctive larval form. The crab zoea has a slender, curved abdomen and a forked telson, but its most striking features are the long rostral and dorsal spines, sometimes augmented by further, lateral spines. [1] These spines can be many times longer than the body of the larva. Crab prezoea larvae have been found fossilised in the stomach contents of the Early Cretaceous bony fish Tharrhias . [15]

Copepoda

Copepods have six naupliar stages, followed by a stage called the copepodid, which has the same number of body segments and appendages in all copepods. The copepodid larva has two pairs of unsegmented swimming appendages, and an unsegmented "hind-body" comprising the thorax and the abdomen. [1] There are typically five copepodid stages, but parasitic copepods may stop after a single copepodid stage. Once the gonads develop, there are no further moults. [1]

Parasitic copepods

First chalimus of Lepeophtheirus elegans Gusev, 1951 (Copepoda, Caligidae):
A, leg 3;
B, leg 3 (other specimen);
C, leg 4;
D, caudal ramus;
E, habitus of putative female, dorsal.
Scale bars: A-D = 0.025 mm; E = 0.2 mm. Lepeophtheirus elegans parasite130014-fig5.tif
First chalimus of Lepeophtheirus elegans Gusev, 1951 (Copepoda, Caligidae):
A, leg 3;
B, leg 3 (other specimen);
C, leg 4;
D, caudal ramus;
E, habitus of putative female, dorsal.
Scale bars: A–D = 0.025 mm; E = 0.2 mm.

Chalimus (plural chalimi) is a stage of development of a copepod parasite of fish, such as the salmon louse (Lepeophtheirus salmonis). [17] [18]

Chalimus Burmeister, 1834 is also a synonym for Lepeophtheirus Nordmann, 1832.

Facetotecta

The single genus in the Facetotecta, Hansenocaris, is only known from its larvae. They were first described by Christian Andreas Victor Hensen in 1887, and named "y-nauplia" by Hans Jacob Hansen, assuming them to be the larvae of barnacles. [19] The adults are presumed to be parasites of other animals. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Caridea</span> Infraorder of shrimp

The Caridea, commonly known as caridean shrimp or true shrimp, from the Greek word καρίς, καρίδος, are an infraorder of shrimp within the order Decapoda. This infraorder contains all species of true shrimp. They are found widely around the world in both fresh and salt water. Many other animals with similar names – such as the mud shrimp of Axiidea and the boxer shrimp of Stenopodidea – are not true shrimp, but many have evolved features similar to true shrimp.

<span class="mw-page-title-main">Dendrobranchiata</span> Suborder of prawns

Dendrobranchiata is a suborder of decapods, commonly known as prawns. There are 540 extant species in seven families, and a fossil record extending back to the Devonian. They differ from related animals, such as Caridea and Stenopodidea, by the branching form of the gills and by the fact that they do not brood their eggs, but release them directly into the water. They may reach a length of over 330 millimetres (13 in) and a mass of 450 grams (1.0 lb), and are widely fished and farmed for human consumption.

<span class="mw-page-title-main">Crab</span> Infraorder of decapod crustaceans

Crabs are decapod crustaceans of the infraorder Brachyura, which typically have a very short projecting tail-like abdomen, usually hidden entirely under the thorax. They live in all the world's oceans, in freshwater, and on land, are generally covered with a thick exoskeleton, and have a single pair of pincers on each arm. They first appeared during the Jurassic Period.

<span class="mw-page-title-main">Krill</span> Order of crustaceans

Krill are small and exclusively marine crustaceans of the order Euphausiacea, found in all the world's oceans. The name "krill" comes from the Norwegian word krill, meaning "small fry of fish", which is also often attributed to species of fish.

<span class="mw-page-title-main">Malacostraca</span> Largest class of crustaceans

Malacostraca is the second largest of the six classes of pancrustaceans just behind hexapods, containing about 40,000 living species, divided among 16 orders. Its members, the malacostracans, display a great diversity of body forms and include crabs, lobsters, crayfish, shrimp, krill, prawns, woodlice, amphipods, mantis shrimp, tongue-eating lice and many other less familiar animals. They are abundant in all marine environments and have colonised freshwater and terrestrial habitats. They are segmented animals, united by a common body plan comprising 20 body segments, and divided into a head, thorax, and abdomen.

<span class="mw-page-title-main">Rhizocephala</span> Superorder of barnacles

Rhizocephala are derived barnacles that are parasitic castrators. Their hosts are mostly decapod crustaceans, but include Peracarida, mantis shrimps and thoracican barnacles. Their habitats range from the deep ocean to freshwater. Together with their sister groups Thoracica and Acrothoracica, they make up the subclass Cirripedia. Their body plan is uniquely reduced in an extreme adaptation to their parasitic lifestyle, and makes their relationship to other barnacles unrecognisable in the adult form. The name Rhizocephala derives from the Ancient Greek roots ῥίζα and κεφαλή, describing the adult female, which mostly consists of a network of thread-like extensions penetrating the body of the host.

<span class="mw-page-title-main">Pleocyemata</span> Suborder of crustaceans

Pleocyemata is a suborder of decapod crustaceans, erected by Martin Burkenroad in 1963. Burkenroad's classification replaced the earlier sub-orders of Natantia and Reptantia with the monophyletic groups Dendrobranchiata (prawns) and Pleocyemata. Pleocyemata contains all the members of the Reptantia, as well as the Stenopodidea, and Caridea, which contains the true shrimp.

<span class="mw-page-title-main">Slipper lobster</span> Family of crustaceans

Slipper lobsters are a family (Scyllaridae) of about 90 species of achelate crustaceans, in the Decapoda clade Reptantia, found in all warm oceans and seas. They are not true lobsters, but are more closely related to spiny lobsters and furry lobsters. Slipper lobsters are instantly recognisable by their enlarged antennae, which project forward from the head as wide plates. All the species of slipper lobsters are edible, and some, such as the Moreton Bay bug and the Balmain bug are of commercial importance.

<span class="mw-page-title-main">Decapod anatomy</span> Entire structure of a decapod crustacean

The decapod is made up of 20 body segments grouped into two main body parts: the cephalothorax and the pleon (abdomen). Each segment may possess one pair of appendages, although in various groups these may be reduced or missing. They are, from head to tail:

<i>Metanephrops challengeri</i> Species of crustacean

Metanephrops challengeri is a species of slim, pink lobster that lives around the coast of New Zealand. It is typically 13–18 cm (5–7 in) long and weighs around 100 g (3.5 oz). The carapace and abdomen are smooth, and adults are white with pink and brown markings and a conspicuous pair of long, slim claws. M. challengeri lives in burrows at depths of 140–640 m (460–2,100 ft) in a variety of sediments. Although individuals can live for up to 15 years, the species shows low fecundity, where small numbers of larvae hatch at an advanced stage.

<i>Amphionides</i> Monotypic species of planktonic crustacean

Amphionides reynaudii is a species of caridean shrimp, whose identity and position in the crustacean system remained enigmatic for a long time. It is a small planktonic crustacean found throughout the world's tropical oceans, which until 2015 was considered the sole representative of the order Amphionidacea, due to unusual morphological features. Molecular data however confirm it as a member of the caridean family Pandalidae, and the confusion of morphology is because only larval phases have so far been studied.

<span class="mw-page-title-main">Eucarida</span> Superorder of crustaceans

Eucarida is a superorder of the Malacostraca, a class of the crustacean subphylum, comprising the decapods, krill, and Angustidontida. They are characterised by having the carapace fused to all thoracic segments, and by the possession of stalked eyes.

<span class="mw-page-title-main">Axiidea</span> Infraorder of crustaceans

Axiidea is an infraorder of decapod crustaceans. They are colloquially known as mud shrimp, ghost shrimp, or burrowing shrimp; however, these decapods are only distantly related to true shrimp. Axiidea and Gebiidea are divergent infraoders of the former infraorder Thalassinidea. These infraorders have converged ecologically and morphologically as burrowing forms. Based on molecular evidence as of 2009, it is now widely believed that these two infraorders represent two distinct lineages separate from one another. Since this is a recent change, much of the literature and research surrounding these infraorders still refers to the Axiidea and Gebiidea in combination as "thalassinidean" for the sake of clarity and reference. This division based on molecular evidence is consistent with the groupings proposed by Robert Gurney in 1938 based on larval developmental stages.

<span class="mw-page-title-main">Sea louse</span> Family of copepods

Sea lice are copepods of the family Caligidae within the order Siphonostomatoida. They are marine ectoparasites that feed on the mucus, epidermal tissue, and blood of host fish. The roughly 559 species in 37 genera include around 162 Lepeophtheirus and 268 Caligus species.

<i>Metanephrops</i> Genus of lobsters

Metanephrops is a genus of lobsters, commonly known as scampi. Important species for fishery include Metanephrops australiensis and Metanephrops challengeri. It differs from other lobsters such as Homarus and Nephrops norvegicus in that its two main claws are of equal size, rather than being differentiated into a crusher and a pincher. There are 18 extant species recognised in the genus:

<i>Scyllarides latus</i> Species of crustacean

Scyllarides latus, the Mediterranean slipper lobster, is a species of slipper lobster found in the Mediterranean Sea and in the eastern Atlantic Ocean. It is edible and highly regarded as food, but is now rare over much of its range due to overfishing. Adults may grow to 1 foot (30 cm) long, are camouflaged, and have no claws. They are nocturnal, emerging from caves and other shelters during the night to feed on molluscs. As well as being eaten by humans, S. latus is also preyed upon by a variety of bony fish. Its closest relative is S. herklotsii, which occurs off the Atlantic coast of West Africa; other species of Scyllarides occur in the western Atlantic Ocean and the Indo-Pacific. The larvae and young animals are largely unknown.

<i>Pisidia longicornis</i> Species of crustacean

Pisidia longicornis, the long-clawed porcelain crab, is a species of porcelain crab that lives in the north-eastern Atlantic Ocean. It varies from reddish to white, and grows to a carapace width of 1 cm (0.4 in). It was first named by Carl Linnaeus in 1767, although the etymology remains unclear.

<i>Lernaeocera branchialis</i> Species of crustacean

Lernaeocera branchialis, sometimes called cod worm, is a parasite of marine fish, found mainly in the North Atlantic. It is a marine copepod which starts life as a small pelagic crustacean larva. It is among the largest of copepods, ranging in size from 2 to 3 millimetres when it matures as a copepodid larva to more than 40 mm as a sessile adult.

<i>Trachysalambria curvirostris</i> Species of crustacean

Trachysalambria curvirostris is a species of prawn that lives in shallow waters of the Indo-West Pacific. It is one of the most important species targeted by prawn fishery, with annual harvests of more than 300,000 t, mostly landed in China.

<span class="mw-page-title-main">Crustacean</span> Subphylum of arthropods

Crustaceans are a group of arthropods that are a part of the subphylum Crustacea, a large, diverse group of mainly aquatic arthropods including decapods, seed shrimp, branchiopods, fish lice, krill, remipedes, isopods, barnacles, copepods, opossum shrimps, amphipods and mantis shrimp. The crustacean group can be treated as a subphylum under the clade Mandibulata. It is now well accepted that the hexapods emerged deep in the Crustacean group, with the completed group referred to as Pancrustacea. The three classes Cephalocarida, Branchiopoda and Remipedia are more closely related to the hexapods than they are to any of the other crustaceans.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Robert Gurney (1942). Larvae of decapod crustacea (PDF). London: Ray Society. pp. 1–306.
  2. Nicolson, Adam (2021). "Crab". Life Between the Tides (1 ed.). New York: Farrar, Straus and Giroux. pp. 116–118. ISBN   9780374251437.
  3. Crustaceamorpha: Metamorphosis and Larvae - UCMP Berkeley
  4. Key for the identification of crustacean nauplii - Academia.edu
  5. 1 2 3 4 "Crustaceamorpha: Metamorphosis and Larvae". ucmp.berkeley.edu. UC Museum of Paleontology (UCMP). Retrieved 22 August 2022.
  6. Branchiopoda (Anostraca, Notostraca, Laevicaudata, Spinicaudata, Cyclestherida)
  7. Alberto Addis; Francesca Biagi; Antonello Floris; Emiliana Puddu; Marcella Carcupino (2007). "Larval development of Lightiella magdalenina (Crustacea, Cephalocarida)". Marine Biology . 152 (3): 733–744. doi:10.1007/s00227-007-0735-8. S2CID   85246439.
  8. Stefan Koenemann; Jørgen Olesen; Frederike Alwes; Thomas Iliffe; Mario Hoenemann; Petra Ungerer; Carsten Wolff; Gerhard Scholtz (2009). "The post-embryonic development of Remipedia (Crustacea)—additional results and new insights". Development Genes and Evolution . 219 (3): 131–145. doi:10.1007/s00427-009-0273-0. PMID   19184096. S2CID   11575617.
  9. "The Biology of Amphipods". Museum Victoria. Archived from the original on September 18, 2010. Retrieved June 7, 2010.
  10. S. T. Ahyong; J. K. Lowry. "Stomatopoda: Families". World Crustacea. Australian Museum. Archived from the original on December 14, 2010. Retrieved June 6, 2010.
  11. Joachim T. Haug; Carolin Haug; Manfred Ehrlich (2008). "First fossil stomatopod larva (Arthropoda: Crustacea) and a new way of documenting Solnhofen fossils (Upper Jurassic, Southern Germany)" (PDF). Palaeodiversity . 1: 103–109.
  12. Kemp, Stanley W. (1907). "XI. Biscayan Plankton. Part XI.-Decapoda". Transactions of the Linnean Society of London. 2nd Series: Zoology. 10 (8): 205–217. doi:10.1111/j.1096-3642.1907.tb00072.x.
  13. G. Scholtz; S. Richter (1995). "Phylogenetic systematics of the reptantian Decapoda (Crustacea, Malacostraca)". Zoological Journal of the Linnean Society . 113 (3): 289–328. doi:10.1006/zjls.1995.0011.
  14. Sammy De Grave; N. Dean Pentcheff; Shane T. Ahyong; et al. (2009). "A classification of living and fossil genera of decapod crustaceans" (PDF). Raffles Bulletin of Zoology . Suppl. 21: 1–109. Archived from the original (PDF) on 2011-06-06.
  15. John G. Maisey & Maria da Gloria P. de Carvalho (1995). "First records of fossil sergestid decapods and fossil brachyuran crab larvae (Arthropoda, Crustacea), with remarks on some supposed palaemonid fossils, from the Santana Formation (Aptian-Albian, NE Brazil)" (PDF). American Museum Novitates (3132): 1–20.
  16. Venmathi Maran, Balu Alagar; Moon, Seong Yong; Ohtsuka, Susumu; Oh, Sung-Yong; Soh, Ho Young; Myoung, Jung-Goo; Iglikowska, Anna; Boxshall, Geoffrey Allan (2013). "The caligid life cycle: new evidence from Lepeophtheirus elegans reconciles the cycles of Caligus and Lepeophtheirus (Copepoda: Caligidae)". Parasite. 20: 15. doi:10.1051/parasite/2013015. PMC   3718518 . PMID   23647664. Open Access logo PLoS transparent.svg
  17. The salmon louse Lepeophtheirus salmonis (Copepoda: Caligidae) life cycle has only two chalimus stages. LA Hamre, C Eichner, CMA Caipang, ST Dalvin…, PLOS One, 2013
  18. Ultrastructure of the frontal filament in chalimus larvae of Caligus elongatus and Lepeophtheirus salmonis from Atlantic salmon, Salmo salar. AW Pike, K Mackenzie, A Rowand, Pathogens of wild and farmed fish: sea lice, 1993
  19. E. A. Ponomarenko (2006). "Facetotecta – unsolved riddle of marine biology". Russian Journal of Marine Biology . 32 (Suppl. 1): S1–S10. doi:10.1134/S1063074006070017. S2CID   2943845.
  20. Gerhard Scholtz (2008). "Zoological detective stories: the case of the facetotectan crustacean life cycle". Journal of Biology . 7 (5): 16. doi: 10.1186/jbiol77 . PMC   2447532 . PMID   18598383.