Salmon louse

Last updated

Salmon louse
Salmonlouse.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Copepoda
Order: Siphonostomatoida
Family: Caligidae
Genus: Lepeophtheirus
Species:
L. salmonis
Binomial name
Lepeophtheirus salmonis
(Krøyer, 1837)  [1]
Synonyms   [1]
  • Caligus pacificusGissler, 1883
  • Caligus salmonisKrøyer, 1837
  • Caligus stroemiiBaird, 1847
  • Caligus vespaMilne-Edwards, 1840
  • Lepeophtheirus pacificus(Gissler, 1883)
  • Lepeophtheirus stroemii(Baird, 1847)
  • Lepeophtheirus uenoi Yamaguti, 1939

The salmon louse (Lepeophtheirus salmonis) is a species of copepod in the genus Lepeophtheirus . It is a sea louse, a parasite living mostly on salmon, particularly on Pacific and Atlantic salmon and sea trout, but is also sometimes found on the three-spined stickleback. [2] It feeds on the mucus, skin and blood of the fish. [3] [4] Once detached, they can be blown by wind across the surface of the sea, like plankton. When they encounter a suitable marine fish host, they adhere themselves to the skin, fins, or gills of the fish, and feed on the mucus or skin. Sea lice only affect fish and are not harmful to humans. [4]

Contents

Salmon lice are ectoparasites of salmon. In the 1980s, high levels of salmon lice were observed on pink salmon smolts. Salmon lice are found in the Pacific and Atlantic Oceans; they infect pink salmon, Atlantic salmon, and chum salmon. [5]

Life cycle

The five phases of the salmon louse life cycle
Each phase comprises one or two life stages (not shown here).
Scaled to size. Nauplius typically are of length 0.5-0.6 mm (0.020-0.024 in), copepodids 0.7 mm (0.028 in), chalimi 1.1-2.3 mm (0.043-0.091 in), preadults 3.4-5.2 mm (0.13-0.20 in) and adults 5-6 mm (0.20-0.24 in) (males) and 8-12 mm (0.31-0.47 in) (females). Salmon louse life cycle.png
The five phases of the salmon louse life cycle
Each phase comprises one or two life stages (not shown here).
Scaled to size. Nauplius typically are of length 0.5–0.6 mm (0.020–0.024 in), copepodids 0.7 mm (0.028 in), chalimi 1.1–2.3 mm (0.043–0.091 in), preadults 3.4–5.2 mm (0.13–0.20 in) and adults 5–6 mm (0.20–0.24 in) (males) and 8–12 mm (0.31–0.47 in) (females).

Some research has occurred on the problems caused by this species in aquaculture, but little is known about the salmon louse's life in nature. Salmon louse infections in fish farming facilities, though, can cause epizootics in wild fish. [7] When aquaculturalists place their post smolts into sea water, they are commonly known to be ectoparasite free, and this can last for many months.

L. salmonis has a direct lifecycle (i.e. a single host) with eight life stages [8] with ecdysis in between. These planktonic nauplii cannot swim directionally against the water current, but drift passively, and have the ability to adjust their depth in the water column. They are almost translucent in colour and are about 0.5–0.6 mm (0.020–0.024 in) long.

At 5 °C (41 °F), the nauplius 1 stage lasts about 52 hours, and about 9 hours at 15 °C (59 °F). Nauplius 2 takes 170 hours and 36 hours at these temperatures, respectively. They are responsive to light and salinity. Low salinities appear to have a greater effect on the planktonic stages than on the parasitic stages. Newly hatched larvae do not survive below salinities of 15‰ and poor development to the infective copepodid occurs between 20 and 25‰. Nauplii and copepodids are positively phototactic and exhibit a daily vertical migration, rising during the day and sinking at night. The ability to find their hosts is not light dependent. They are responsive to low-frequency water accelerations, such as those produced by a swimming fish. Finding their migratory hosts in the vastness of the ocean is still a mystery for scientists to solve, but the species has managed to do this effectively for millennia. [9]

The third stage is the copepodid stage, in which the length is about 0.7 mm (0.028 in) and could take 2 to 14 days depending on water temperature, and the salmon louse attaches itself to the fish.

Stages four and five are the chalimus stages. The salmon louse becomes mobile and can move around the surface of fish and can also swim in the water column, and grows to a length of 1.1 mm (0.043 in) for the stage four, and 2.3 mm (0.091 in) for stage five. Chalimus stage I can last up to 10 days and Chalimus stage II can last for up to 15 days.

Stages six and seven are called the pre-adult phase. Pre-adult stage I lasts typically 10 days for females, and 8 days for males. Pre-adult stage II typically lasts 12 days for females and 9 days for males at 10 °C (50 °F). Pre-adult stages measure in length from 3.4 to 5.2 mm (0.13 to 0.20 in).

The two preadult stages are followed by the fully mature adult phase. In the preadult stages, the genital complex is underdeveloped and the mean length is about 3.6 mm (0.14 in). Final moults to adult stages, both male and female, then take place. The female is larger than the male, with males measuring 5–6 mm (0.20–0.24 in) and females 8–18 mm (0.31–0.71 in). Female adults can produce 10-11 pairs of egg strings over their lifecycle. Mean egg numbers per string (fecundity) have been recorded as 152 (+16) with a range from 123 to 183 at 7.2 °C (45.0 °F). [8]

The development to sexual maturity following attachment to the host fish depends on water temperature and the generation time, from egg to mature adult, and ranges from 32 days at 15 °C (59 °F) to 106 days at 7.5 °C (45.5 °F). Egg strings tend to be longer with higher fecundity at lower temperatures, but factors affecting egg production are poorly understood. [9]

The sea louse generation time is around 8–9 weeks at 6 °C (43 °F), 6 weeks at 9 °C (48 °F), and 4 weeks at 18 °C (64 °F). The lifespan of the adult under natural conditions has not been determined, but under laboratory conditions, females have lived for up to 210 days. [9]

Description

The eight life stages of the salmon louse
Male and female salmon lice cannot be distinguished by the naked eye in the Nauplius, Copepodid and Chalimus stages. First in the larger (note different scale) pre-adult and adult stages, sex determination by visual inspection is possible. SLRC - Life cycle of the salmon louse (Lepeophtheirus salmonis).png
The eight life stages of the salmon louse
Male and female salmon lice cannot be distinguished by the naked eye in the Nauplius, Copepodid and Chalimus stages. First in the larger (note different scale) pre-adult and adult stages, sex determination by visual inspection is possible.

The thorax is broad and shield shaped. The abdomen is narrower, and in the females, filled with eggs. The females also have two long egg strings attached to the abdomen. The salmon louse uses its feet to move around on the host or to swim from one host to another.

Effects on salmon farms

This parasite is one of the major threats to salmon farmers. Salmon are stocked usually for a 14 - 18-month cycle. [11] Salmon farms are an unusual, but ideal environment for the sea lice to breed. [11] The infestations of sea lice in salmon farms increases the number of lice in the rest of the surrounding water dramatically if the eggs from the gravid louse are allowed to disperse. [11] Sea lice can also attach to juvenile salmon migrating from rivers to the ocean if they pass by fish farms. [11]

The Salmon louse currently infests nearly half of Scotland's salmon farms. [12] In 2016 Guardian news stated that the lice killed thousands of tonnes of farmed fish, caused skin lesions and secondary infections in millions more, and cost the Scottish salmon industry around £300m in control efforts. [12] [13] [14] [15] [16]

Farmers recently started using lasers with machine vision to fight lice: Underwater Stingray Laser Zaps Salmon to Kill Lice on YouTube.

Salmon lice is one of the major challenges in today's salmon farming. It is possible to use several methods to increase its resistance against salmon lice.

Genomic selection (GS) is a form of Molecular breeding and has become a very popular selection method, used in most livestock species, but also in several important aquaculture species, like salmon and tilapia. It offers higher selection accuracy than selection based on phenotypes and pedigree records alone. However, genetic progress in selective breeding is limited by the heritability of the measured traits, the generation interval of the species, and the need to target several traits in the breeding target. In addition, advanced breeding programs are normally closed systems, and are limited to the existing genetic variation in the broodstock, and new variation that arises from the novo mutations. CRISPR is one of the methods that then offers new solutions and opportunities.

CRISPR is characterised as a GMO light method, since it does not necessarily mean that a new gene is introduced, it may for instance only have been repaired, if a harmful mutation has occurred. GMO stands for genetically modified organism. There is a big and global debate about what should be defined as genetic modification. In several countries (e.g. USA, Canada and Brazil), genetically modified fish is allowed to be sold as food today. In Norway, CRISPR has only been used in research so far, and genetic modification is strictly regulated by the Gene Technology Act.

GMO could be a part of the solution for the salmon lice problem. The challenge is that lice resistance has a polygenic inheritance, and a low-to-moderate heritability, but with CRISPR technology we have the opportunity to go beyond the existing alleles and genome of the Atlantic salmon and use genomic material from for instance coho or pink salmon, which show almost complete lice resistant. [17]

CRISPR is a method used on an organism to change the DNA structure. There are several ways this can be done. You can change a gene, paste a gene from other organisms, turn off a gene or knock out genes. Knock out genes may cause other genes to compensate. Turning off the gene is the least complicated procedure. Turning off the gene often gives the same result that it is possible to achieve through breeding, but it's faster. It is also more probable that animals with small changes can become human food.

Another use of CRISPR is escape-safe farmed salmon, since researchers now have succeeded in turning off a gene that prevents salmon from developing germ cells. The salmon without germ cells can not harm the local salmon strains genetically, even though it can still escape. However, this method is still not scalable to serve as a practical solution to all salmon produced for aquaculture purpose. [18]

Disease

In small numbers, salmon lice cause little damage to a fish although if populations increase on a fish, this can lead to death. The parasites can cause physical damage to the fish's fins, skin erosion, constant bleeding, and open wounds creating pathways for other pathogens. [11] The sea lice may also act as a vector for diseases between wild and farmed salmon. [11] These copepod vectors have caused infectious salmon anemia (ISA) along the Atlantic coast. [19] [20] An outbreak of ISA occurred in Chile during 2007 where it spread quickly from one farm to another, destroying the salmon farms. [11]

Salmon lice infection in pink salmon weakens ionic homeostasis in pink salmon smolts. Homeostasis is needed for the internal regulation of body temperature and pH levels; the process allows fish to travel from fresh water to sea water. Disruption of ionic homeostasis in pre-mature smolt stages can result in reductions in growth rate, limit swimming capabilities, and even death. Disturbances in hydro mineral balance can result in negative consequences at the cellular, tissue, and organism levels. High levels of salmon lice infections result in a weaker ion regulation system. [21]

The ability to activate an inflammatory response is a way to combat salmon lice infection. The intensity of inflammatory response controls how fast the parasites are rejected from the body. Intensity is determined by recognition of and regulation by salmon lice secretory/excretory products (SEP), which include proteases and prostaglandin E2. The marine parasite secretes SEP into the damaged skin of the salmon which inhibits proteolytic activity. Proteolytic activity increases the amount of host peptides and amino acids that can be used as a source of nutrition and lowers the intensity of inflammatory responses. [22]

Genome

The salmon louse genome has been sequenced using various platforms and independent genome assemblies have been made, including two at chromosome level [23] [24] that yielded assemblies ranging from 665 to 790 Megabase pairs (Mbp) length.

Nuclear DNA content of salmon louse. Flow cytometry histograms of fluorescent stained (Propidium Iodide, PI) cells of salmon louse mixed with chicken erythrocytes (CEN) and human mono-nucleated cells (MCN) used as internal reference standards. Fluorescence (FL) peaks values on the X-axis are reported in arbitrary units expressed as fluorescence channel numbers (FL value). Values on the Y-axis (counts) refer to the number of nuclei counted per channel. pg= picograms of DNA (haploid, 1C). Nuclear DNA content of salmon louse.jpg
Nuclear DNA content of salmon louse. Flow cytometry histograms of fluorescent stained (Propidium Iodide, PI) cells of salmon louse mixed with chicken erythrocytes (CEN) and human mono-nucleated cells (MCN) used as internal reference standards. Fluorescence (FL) peaks values on the X-axis are reported in arbitrary units expressed as fluorescence channel numbers (FL value). Values on the Y-axis (counts) refer to the number of nuclei counted per channel. pg= picograms of DNA (haploid, 1C).

Two cytometric techniques, flow cytometry (FCM) and Feulgen image analysis densitometry (FIAD), gave measurements of 1.3–1.6 Gigabase pairs (Gb) in the haploid genome corresponding to a nuclear DNA weight of 1.35-1.61 picograms (pg) with differences between sexes. [25] FIAD derived estimates were of 1.35 and 1.45 picograms (pg) DNA while FCM analyses estimated a size of 1.57 and 1.61 pg for adult females and males, respectively. Male genome size has been shown to be consistently slightly larger than female genome size due to erosion of the W-chromosome in the heterozygotic female. [26]

Available data suggest that the genome sizes of salmon lice are variable and that sequence-based methods underestimate the genome size by approximately 33%. The most plausible explanation for this discrepancy may be that repetitive elements cause sequencing approaches to underestimate genome size [25] as reported for beetles (Coleoptera). [27]

See also

Related Research Articles

<span class="mw-page-title-main">Aquaculture</span> Farming of aquatic organisms

Aquaculture, also known as aquafarming, is the controlled cultivation ("farming") of aquatic organisms such as fish, crustaceans, mollusks, algae and other organisms of value such as aquatic plants. Aquaculture involves cultivating freshwater, brackish water, and saltwater populations under controlled or semi-natural and can be contrasted with commercial fishing, which is the harvesting of wild fish. Aquaculture is also a practice used for restoring and rehabilitating marine and freshwater ecosystems. Mariculture, commonly known as marine farming, is aquaculture in seawater habitats and lagoons, as opposed to freshwater aquaculture. Pisciculture is a type of aquaculture that consists of fish farming to obtain fish products as food.

<span class="mw-page-title-main">Salmon</span> Commercially important migratory fish

Salmon is the common name for several commercially important species of euryhaline ray-finned fish from the genera Salmo and Oncorhynchus of the family Salmonidae, native to tributaries of the North Atlantic (Salmo) and North Pacific (Oncorhynchus) basins. Other closely related fish in the same family include trout, char, grayling, whitefish, lenok and taimen, all coldwater fish of the subarctic and cooler temperate regions with some sporadic endorheic populations in Central Asia.

<span class="mw-page-title-main">Fish farming</span> Raising fish commercially in enclosures

Fish farming or pisciculture involves commercial breeding of fish, most often for food, in fish tanks or artificial enclosures such as fish ponds. It is a particular type of aquaculture, which is the controlled cultivation and harvesting of aquatic animals such as fish, crustaceans, molluscs and so on, in natural or pseudo-natural environments. A facility that releases juvenile fish into the wild for recreational fishing or to supplement a species' natural numbers is generally referred to as a fish hatchery. Worldwide, the most important fish species produced in fish farming are carp, catfish, salmon and tilapia.

<span class="mw-page-title-main">Head louse</span> Insect parasite of humans

The head louse is an obligate ectoparasite of humans. Head lice are wingless insects that spend their entire lives on the human scalp and feed exclusively on human blood. Humans are the only known hosts of this specific parasite, while chimpanzees and bonobos host a closely related species, Pediculus schaeffi. Other species of lice infest most orders of mammals and all orders of birds.

<span class="mw-page-title-main">Atlantic salmon</span> Species of fish

The Atlantic salmon is a species of ray-finned fish in the family Salmonidae. It is the third largest of the Salmonidae, behind Siberian taimen and Pacific Chinook salmon, growing up to a meter in length. Atlantic salmon are found in the northern Atlantic Ocean and in rivers that flow into it. Most populations are anadromous, hatching in streams and rivers but moving out to sea as they grow where they mature, after which the adults seasonally move upstream again to spawn.

Infectious salmon anemia (ISA) is a viral disease of Atlantic salmon caused by Salmon isavirus. It affects fish farms in Canada, Norway, Scotland and Chile, causing severe losses to infected farms. ISA has been a World Organisation for Animal Health notifiable disease since 1990. In the EU, it is classified as a non-exotic disease, and is monitored by the European Community Reference Laboratory for Fish Diseases.

<span class="mw-page-title-main">Sea louse</span> Family of copepods

Sea lice are copepods of the family Caligidae within the order Siphonostomatoida. They are marine ectoparasites that feed on the mucus, epidermal tissue, and blood of host fish. The roughly 559 species in 37 genera include around 162 Lepeophtheirus and 268 Caligus species.

<span class="mw-page-title-main">Broughton Archipelago Provincial Park</span> Provincial park in British Columbia, Canada

Broughton Archipelago Provincial Park is the largest marine provincial park located in British Columbia, Canada. The park is located in the Queen Charlotte Strait around 30 kilometres (19 mi) east of Port McNeill, a town situated on Vancouver Island. In terms of its functions, the park offers tourism opportunities such as kayaking and whale watching, preserves a wide array of wildlife including many at-risk species, and has a long history of use by First Nation peoples.

<span class="mw-page-title-main">Cleaner fish</span> Fish that remove parasites and dead tissue from other species

Cleaner fish are fish that show a specialist feeding strategy by providing a service to other species, referred to as clients, by removing dead skin, ectoparasites, and infected tissue from the surface or gill chambers. This example of cleaning symbiosis represents mutualism and cooperation behaviour, an ecological interaction that benefits both parties involved. However, the cleaner fish may consume mucus or tissue, thus creating a form of parasitism called cheating. The client animals are typically fish of a different species, but can also be aquatic reptiles, mammals, or octopuses. A wide variety of fish including wrasse, cichlids, catfish, pipefish, lumpsuckers, and gobies display cleaning behaviors across the globe in fresh, brackish, and marine waters but specifically concentrated in the tropics due to high parasite density. Similar behaviour is found in other groups of animals, such as cleaner shrimps.

<span class="mw-page-title-main">Corkwing wrasse</span> Species of fish

The corkwing wrasse is a species of wrasse native to the eastern Atlantic Ocean from Norway to Morocco and out to the Azores, as well as being found in the Mediterranean Sea and the Adriatic Sea. This species can be found in areas of rock or eelgrass at depths from 1 to 30 m.

<span class="mw-page-title-main">Aquaculture of salmonids</span> Fish farming and harvesting under controlled conditions

The aquaculture of salmonids is the farming and harvesting of salmonid fish under controlled conditions for both commercial and recreational purposes. Salmonids, along with carp and tilapia, are the three most important fish groups in aquaculture. The most commonly commercially farmed salmonid is the Atlantic salmon.

<span class="mw-page-title-main">Fish diseases and parasites</span> Disease that affects fish

Like humans and other animals, fish suffer from diseases and parasites. Fish defences against disease are specific and non-specific. Non-specific defences include skin and scales, as well as the mucus layer secreted by the epidermis that traps microorganisms and inhibits their growth. If pathogens breach these defences, fish can develop inflammatory responses that increase the flow of blood to infected areas and deliver white blood cells that attempt to destroy the pathogens.

<span class="mw-page-title-main">Crustacean larva</span> Crustacean larval and immature stages between hatching and adult form

Crustaceans may pass through a number of larval and immature stages between hatching from their eggs and reaching their adult form. Each of the stages is separated by a moult, in which the hard exoskeleton is shed to allow the animal to grow. The larvae of crustaceans often bear little resemblance to the adult, and there are still cases where it is not known what larvae will grow into what adults. This is especially true of crustaceans which live as benthic adults, more-so than where the larvae are planktonic, and thereby easily caught.

<i>Lernaeocera branchialis</i> Species of crustacean

Lernaeocera branchialis, sometimes called cod worm, is a parasite of marine fish, found mainly in the North Atlantic. It is a marine copepod which starts life as a small pelagic crustacean larva. It is among the largest of copepods, ranging in size from 2 to 3 millimetres when it matures as a copepodid larva to more than 40 mm as a sessile adult.

<span class="mw-page-title-main">Aquaculture in Canada</span>

Aquaculture is the farming of fish, shellfish or aquatic plants in either fresh or saltwater, or both. The farmed animals or plants are cared for under a controlled environment to ensure optimum growth, success and profit. When they have reached an appropriate size, they are harvested, processed, and shipped to markets to be sold. Aquaculture is practiced all over the world and is extremely popular in countries such as China, where population is high and fish is a staple part of their everyday diet.

<span class="mw-page-title-main">Environmental issues with salmon</span>

Salmon population levels are of concern in the Atlantic and in some parts of the Pacific. Salmon are typically anadromous - they rear and grow in freshwater, migrate to the ocean to reach sexual maturity, and then return to freshwater to spawn. Determining how environmental stressors and climate change will affect these fisheries is challenging due to their lives split between fresh and saltwater. Environmental variables like warming temperatures and habitat loss are detrimental to salmon abundance and survival. Other human influenced effects on salmon like overfishing and gillnets, sea lice from farm raised salmon, and competition from hatchery released salmon have negative effects as well.

<span class="mw-page-title-main">Diseases and parasites in salmon</span> Diseases and parasites in salmon

Diseases and parasites in salmon, trout and other salmon-like fishes of the family Salmonidae are also found in other fish species. The life cycle of many salmonids is anadromous, so such fish are exposed to parasites in fresh water, brackish water and saline water.

<span class="mw-page-title-main">Juvenile fish</span> Young fish

Fish go through various life stages between fertilization and adulthood. The life of fish start as spawned eggs which hatch into immotile larvae. These larval hatchlings are not yet capable of feeding themselves and carry a yolk sac which provides stored nutrition. Before the yolk sac completely disappears, the young fish must mature enough to be able to forage independently. When they have developed to the point where they are capable of feeding by themselves, the fish are called fry. When, in addition, they have developed scales and working fins, the transition to a juvenile fish is complete and it is called a fingerling, so called as they are typically about the size of human fingers. The juvenile stage lasts until the fish is fully grown, sexually mature and interacting with other adult fish.

<i>Argulus foliaceus</i> Species of crustacean

Argulus foliaceus, also known as the common fish louse, is a species of fish lice in the family Argulidae. It is "the most common and widespread native argulid in the Palaearctic" and "one of the most widespread crustacean ectoparasites of freshwater fish in the world", considering its distribution and range of hosts. It can cause the severe disease state argulosis in a wide variety of fish species. It is responsible for epizootic outbreaks that have led to the collapse of aquaculture operations. Fish lice are not related to lice, which are insects.

Piscirickettsia salmonis is the bacterial causative agent of piscirickettsiosis, an epizootic disease in salmonid fishes. It has a major impact on salmon populations, with a mortality rate of up to 90% in some species. The type strain, LF-89, is from Chile, but multiple strains exist, and some are more virulent than others. P. salmonis and piscrickettsiosis are present in various geographic regions from Europe to Oceania to South America, but the Chilean salmon farming industry has been particularly hard-hit. Different strategies of controlling the disease and farm-to-farm spread have been the subject of much research, but a significant amount is still unknown.

References

  1. 1 2 Geoff Boxshall (2013). Walter TC, Boxshall G (eds.). "Lepeophtheirus salmonis (Krøyer, 1837)". World of Copepods database. World Register of Marine Species . Retrieved October 8, 2013.
  2. Simon R. M. Jones; Gina Prosperi-Porta; Eliah Kim; Paul Callow; N. Brent Hargreaves (2006). "The occurrence of Lepeophtheirus salmonis and Caligus clemensi (copepoda: Caligidae) on three-spine stickleback Gasterosteus aculeatus in coastal British Columbia". Journal of Parasitology . 92 (3): 473–480. doi:10.1645/GE-685R1.1. JSTOR   40058517. PMID   16883988. S2CID   41370981.
  3. Christiane Eichner, Petter Frost, Bjarte Dysvik, Inge Jonassen, Bjørn Kristiansen & Frank Nilsen (2008). "Salmon louse (Lepeophtheirus salmonis) transcriptomes during post molting maturation and egg production, revealed using EST-sequencing and microarray analysis". BMC Genomics . 9: 126. doi: 10.1186/1471-2164-9-126 . PMC   2329643 . PMID   18331648.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. 1 2 "Sea Lice." Marine Institute. Marine Institute, n. d. Web. 10 Dec. 2013. < "Sea Lice". Archived from the original on 2013-12-14. Retrieved 2013-12-11.>.
  5. Naturforskning. "Salmon lice on sea trout and Atlantic salmon". Archived from the original on 2021-12-15. Retrieved 4 February 2019 via YouTube.
  6. Thorstad, EB; Todd, CD; Uglem, I; Bjørn, PA; Gargan, PG; Vollset, KW; Halttunen, E; Kålås, S; Berg, M; Finstad, B (2015-08-20). "Effects of salmon lice Lepeophtheirus salmonis on wild sea trout: Salmo trutta—a literature review". Aquaculture Environment Interactions . 7 (2). Inter-Research Science Center: 91–113. doi: 10.3354/aei00142 . hdl: 10023/7295 . ISSN   1869-215X. CC-BY icon.svg Modified material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  7. Martin Krkošek, Jennifer S. Ford, Alexandra Morton, Subhash Lele, Ransom A. Myers & Mark A. Lewis (2007). "Declining wild salmon populations in relation to parasites from farm salmon" (PDF). Science . 318 (5857): 1772–1775. Bibcode:2007Sci...318.1772K. doi:10.1126/science.1148744. PMID   18079401. S2CID   86544687. Archived from the original (PDF) on 2011-08-27.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. 1 2 P. A. Heuch; J. R. Nordhagen; T. A. Schram (2000). "Egg production in the salmon louse [Lepeophtheirus salmonis (Krøyer)] in relation to origin and water temperature". Aquaculture Research . 31 (11): 805–814. doi:10.1046/j.1365-2109.2000.00512.x.
  9. 1 2 3 "Life cycle of the Salmon Louse". Marine Institute . Retrieved 4 February 2019.
  10. Sea Lice Research Centre (2020), SLRC - Life cycle of the salmon louse (Lepeophtheirus salmonis), DataverseNO, doi:10.18710/gqtyyl , retrieved 2022-04-06
  11. 1 2 3 4 5 6 7 "Sea Lice." Farmed and Dangerous. N.p., n. d. Web. 10 Dec. 2013. <http://www.farmedanddangerous.org/salmon-farming-problems/environmental-impacts/sea-lice/>.
  12. 1 2 "Salmon farming in crisis". The Guardian . Retrieved 31 March 2017.
  13. Ives, Stephen C.; Armstrong, John D.; Collins, Catherine; Moriarty, Meadhbh; Murray, Alexander G. (2023-03-23). "Salmon lice loads on Atlantic salmon smolts associated with reduced welfare and increased population mortalities". Aquaculture Environment Interactions. 15: 73–83. doi: 10.3354/aei00453 . ISSN   1869-215X.
  14. Taranger, Geir Lasse; Karlsen, Ørjan; Bannister, Raymond John; Glover, Kevin Alan; Husa, Vivian; Karlsbakk, Egil; Kvamme, Bjørn Olav; Boxaspen, Karin Kroon; Bjørn, Pål Arne; Finstad, Bengt; Madhun, Abdullah Sami; Morton, H. Craig; Svåsand, Terje (2015-03-01). "Risk assessment of the environmental impact of Norwegian Atlantic salmon farming". ICES Journal of Marine Science. 72 (3): 997–1021. doi:10.1093/icesjms/fsu132. hdl: 11250/282826 . ISSN   1095-9289.
  15. Tully, O.; Nolan, D. T. (2002-09-24). "A review of the population biology and host–parasite interactions of the sea louse Lepeophtheirus salmonis (Copepoda: Caligidae)". Parasitology. 124 (7): 165–182. doi:10.1017/S0031182002001889. ISSN   1469-8161.
  16. Boerlage, Annette S.; Shrestha, Shailesh; Leinonen, Ilkka; Jansen, Mona Dverdal; Revie, Crawford W.; Reeves, Aaron; Toma, Luiza (2024-02-15). "Sea lice management measures for farmed Atlantic salmon (Salmo salar) in Scotland: Costs and effectiveness". Aquaculture. 580: 740274. doi:10.1016/j.aquaculture.2023.740274. ISSN   0044-8486.
  17. Rosendal, G. Kristin; Olesen, Ingrid (2022). "Overcoming barriers to breeding for increased lice resistance in farmed Atlantic salmon: A case study from Norway" (PDF). Aquaculture. 548: 737574. Bibcode:2022Aquac.54837574R. doi: 10.1016/j.aquaculture.2021.737574 . S2CID   242696378.
  18. "Genredigering og Crispr". Bioteknologirådet (in Norwegian Bokmål). Retrieved 2022-05-06.
  19. B. H. Dannevig; K. E. Thorud (1999). "Other viral diseases and agents of coldwater fish: infectious salmon anemia, pancreas disease and viral erythrocytinecrosis". In Patrick T. K. Woo; David W. Bruno (eds.). Viral, Bacterial and Infections. {Fish Diseases and Disorders. Vol. 3. Wallingford and New York: {CAB International (CABI). pp. 149–175. ISBN   978-1-84593-554-2.
  20. APHIS Veterinary Services, Infectious Salmon Anemia Tech Note. 2002, US Department of Agriculture.
  21. Brauner, C. J., Sackville, M., Gallagher, Z., Tang, S., Nendick, L., & Farrell, A. P. (2012). Physiological consequences of the salmon louse (Lepeophtheirus salmonis) on juvenile pink salmon (Oncorhynchus gorbuscha): implications for wild salmon ecology and management, and for salmon aquaculture. Philosophical Transactions of the Royal Society B: Biological Sciences , 367(1596), 1770-1779.
  22. Jones, S., & Johnson, S. (2015). Biology of sea lice, Lepeophtheirus salmonis and Caligus spp., in western and eastern Canada.
  23. Skern-Mauritzen, Rasmus; Malde, Ketil; Eichner, Christiane; Dondrup, Michael; Furmanek, Tomasz; Besnier, Francois; Komisarczuk, Anna Zofia; Nuhn, Michael; Dalvin, Sussie; Edvardsen, Rolf B.; Klages, Sven; Huettel, Bruno; Stueber, Kurt; Grotmol, Sindre; Karlsbakk, Egil (2021-08-02). "The salmon louse genome: Copepod features and parasitic adaptations". Genomics. 113 (6): 3666–3680. doi:10.1016/j.ygeno.2021.08.002. hdl: 11250/2777339 . ISSN   0888-7543. PMID   34403763.
  24. Messmer, Amber M.; Leong, Jong S.; Rondeau, Eric B.; Mueller, Anita; Despins, Cody A.; Minkley, David R.; Kent, Matthew P.; Lien, Sigbjørn; Boyce, Brad; Morrison, Diane; Fast, Mark D.; Norman, Joseph D.; Danzmann, Roy G.; Koop, Ben F. (2018-03-05). "A 200K SNP chip reveals a novel Pacific salmon louse genotype linked to differential efficacy of emamectin benzoate". Marine Genomics. 40: 45–57. Bibcode:2018MarGn..40...45M. doi:10.1016/j.margen.2018.03.005. hdl: 11250/2572828 . ISSN   1874-7787. PMID   29673959.
  25. 1 2 3 Wyngaard, Grace A.; Skern-Mauritzen, Rasmus; Malde, Ketil; Prendergast, Rachel; Peruzzi, Stefano (2022-04-22). "The salmon louse genome may be much larger than sequencing suggests". Scientific Reports. 12 (1): 6616. Bibcode:2022NatSR..12.6616W. doi:10.1038/s41598-022-10585-2. ISSN   2045-2322. PMC   9033869 . PMID   35459797. Creative Commons by small.svg  This article incorporates textfrom this source, which is available under the CC BY 4.0 license.
  26. Bachtrog, Doris (2006-10-07). "A dynamic view of sex chromosome evolution". Current Opinion in Genetics & Development. 16 (6): 578–585. doi:10.1016/j.gde.2006.10.007. ISSN   0959-437X. PMID   17055249.
  27. Pflug, James M.; Holmes, Valerie Renee; Burrus, Crystal; Johnston, J. Spencer; Maddison, David R. (2020-06-29). "Measuring Genome Sizes Using Read-Depth, k-mers, and Flow Cytometry: Methodological Comparisons in Beetles (Coleoptera)". G3: Genes, Genomes, Genetics. 10 (9): 3047–3060. doi:10.1534/g3.120.401028. ISSN   2160-1836. PMC   7466995 . PMID   32601059.