Henneguya zschokkei

Last updated

Henneguya zschokkei
Henneguya zschokkei.jpg
Henneguya zschokkei in salmon
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Cnidaria
Class: Myxosporea
Order: Bivalvulida
Family: Myxobolidae
Genus: Henneguya
Species:
H. zschokkei
Binomial name
Henneguya zschokkei
(Gurley, 1894)
Synonyms [1]
  • Henneguya salminicolaWard, 1919

Henneguya zschokkei or Henneguya salminicola is a species of a myxosporean endoparasite. It afflicts several salmon in the genera Oncorhynchus and Salmo , [2] [3] where it causes milky flesh or tapioca disease. [1] H. zschokkei is notable for its reliance on an exclusively anaerobic metabolism as well as its lack of mitochondria and mitochondrial DNA. [4] It is the only known multicellular animal that does not require oxygen to survive. [5]

Contents

Description

Henneguya zschokkei is found in fish as an ovoid spore with two anterior polar capsules and two long caudal appendages. [6] Individuals are very small (about 10 micrometers in diameter), [7] but are found aggregated into cysts 3–6 mm in diameter at any place in the animal's musculature. [8]

Metabolism

So far as is known, H. zschokkei is unique among multicellular animals because it does not make use of the aerobic respiration of oxygen. The creature relies instead on an exclusively anaerobic metabolism, making it the only known member of the eukaryotic animal kingdom to shun oxygen as the foundation of its metabolism. [9] [8] It also lacks a mitochondrial genome and therefore mitochondria. [10]

H. zschokkei is ultimately a highly derived cnidarian and is distantly related to jellyfish, sea anemone and corals. However, this obligate internal parasite so little resembles cnidarians (let alone other multicellular animals) that it, along with many other species in the class Myxosporea, were initially categorized as protozoa. It is nevertheless most closely related to jellyfish. This species, like most myxosporeans, lacks many of the diagnostic criteria that identify cnidarians. Indeed, it is without nervous, epithelial, gut or muscle cells of any kind. [11]

This parasite has not only lost its mitochondria and the mitochondrial DNA residing in them, but also the nuclear genes that code for mitochondrial reproduction. What genetic instructions for these functions that remain lie in useless pseudogenes. [4]

Origins

The origin and cause of H. zschokkei's highly reduced genome are not yet known. While eukaryotes are known for aerobic respiration, a few unicellular lineages native to hypoxic environments have also lost this capacity. In the absence of oxygen these single-celled organisms lose the portions of their genome that anticipate and govern aerobic respiration. These unusual eukaryotes have developed mitochondria-related organelles (MROs) that fulfill many of the functions of conventional mitochondria. However there is no evidence of such an adaptation in the multicellular H. zschokkei. [4]

One hypothesis put forward to explain the highly unusual habit of H. zschokkei and its fellow myxosporeans invokes the cancers of cnidarians. On this explanation, animals such as H. zschokkei were originally cancerous growths in free-swimming jellyfish that escaped their parent organism, thereafter becoming a separate species that parasitized other animals. Such an origin is referred to as a SCANDAL, a loose acronym of the phrase speciated by cancer development in animals. [12]

Hosts

Known hosts of Henneguya zschokkei include: [13]

See also

Taxa
Structures

Related Research Articles

<span class="mw-page-title-main">Cnidaria</span> Aquatic animal phylum having cnydocytes

Cnidaria is a phylum under kingdom Animalia containing over 11,000 species of aquatic animals found both in fresh water and marine environments, including jellyfish, hydroids, sea anemones, corals and some of the smallest marine parasites. Their distinguishing features are a decentralized nervous system distributed throughout a gelatinous body and the presence of cnidocytes or cnidoblasts, specialized cells with ejectable flagella used mainly for envenomation and capturing prey. Their bodies consist of mesoglea, a non-living, jelly-like substance, sandwiched between two layers of epithelium that are mostly one cell thick. Cnidarians are also some of the only animals that can reproduce both sexually and asexually.

<span class="mw-page-title-main">Mitochondrion</span> Organelle in eukaryotic cells responsible for respiration

A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. They were discovered by Albert von Kölliker in 1857 in the voluntary muscles of insects. Meaning a thread-like granule, the term mitochondrion was coined by Carl Benda in 1898. The mitochondrion is popularly nicknamed the "powerhouse of the cell", a phrase popularized by Philip Siekevitz in a 1957 Scientific American article of the same name.

<span class="mw-page-title-main">Mitochondrial DNA</span> DNA located in mitochondria

Mitochondrial DNA is the DNA located in the mitochondria organelles in a eukaryotic cell that converts chemical energy from food into adenosine triphosphate (ATP). Mitochondrial DNA is a small portion of the DNA contained in a eukaryotic cell; most of the DNA is in the cell nucleus, and, in plants and algae, the DNA also is found in plastids, such as chloroplasts.

An anaerobic organism or anaerobe is any organism that does not require molecular oxygen for growth. It may react negatively or even die if free oxygen is present. In contrast, an aerobic organism (aerobe) is an organism that requires an oxygenated environment. Anaerobes may be unicellular or multicellular. Most fungi are obligate aerobes, requiring oxygen to survive. However, some species, such as the Chytridiomycota that reside in the rumen of cattle, are obligate anaerobes; for these species, anaerobic respiration is used because oxygen will disrupt their metabolism or kill them. The sea floor is possibly one of the largest accumulation of anaerobic organisms on our planet, where microbes are primarily concentrated around hydrothermal vents. These microbes produce energy in absence of sunlight or oxygen through a process called chemosynthesis, where by inorganic compounds such as hydrogen gas, hydrogen sulfide or ferrous ions are converted into organic matter.

<span class="mw-page-title-main">Cellular respiration</span> Process to convert glucose to ATP in cells

Cellular respiration is the process by which biological fuels are oxidized in the presence of an inorganic electron acceptor, such as oxygen, to drive the bulk production of adenosine triphosphate (ATP), which contains energy. Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products.

<span class="mw-page-title-main">Multicellular organism</span> Organism that consists of more than one cell

A multicellular organism is an organism that consists of more than one cell, unlike unicellular organisms. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially uni- and partially multicellular, like slime molds and social amoebae such as the genus Dictyostelium.

<span class="mw-page-title-main">Myxozoa</span> Group of marine parasites

Myxozoa is a subphylum of aquatic cnidarian animals – all obligate parasites. It contains the smallest animals ever known to have lived. Over 2,180 species have been described and some estimates have suggested at least 30,000 undiscovered species. Many have a two-host lifecycle, involving a fish and an annelid worm or a bryozoan. The average size of a myxosporean spore usually ranges from 10 μm to 20 μm, whereas that of a malacosporean spore can be up to 2 mm. Myxozoans can live in both freshwater and marine habitats.

<span class="mw-page-title-main">Myxosporea</span> Class of cnidarians comprising microscopic parasites

Myxosporea is a class of microscopic animals, all of whom are parasites. They belong to the Myxozoa clade within Cnidaria. They have a complex life cycle that comprises vegetative forms in two hosts—one an aquatic invertebrate and the other an ectothermic vertebrate, usually a fish. Each parasitized host releases a different type of spore. The two forms of spore are so different that until relatively recently they were treated as belonging to different classes within the Myxozoa.

<i>Ceratonova shasta</i> Species of marine parasite

Ceratonova shasta is a myxosporean parasite that infects salmonid fish on the Pacific coast of North America. It was first observed at the Crystal Lake Hatchery, Shasta County, California, and has now been reported from Idaho, Oregon, Washington, British Columbia and Alaska.

<span class="mw-page-title-main">Myxobolidae</span> Family of marine parasites

Myxobolidae is a family of myxosporean parasites which typically infect freshwater fishes, and includes the economically significant species, Myxobolus cerebralis. They have been shown to have a complex life cycle, involving an alternate stage in an invertebrate, typically an annelid or polychaete worm.

<span class="mw-page-title-main">Medusozoa</span> Clade of marine invertebrates

Medusozoa is a clade in the phylum Cnidaria, and is often considered a subphylum. It includes the classes Hydrozoa, Scyphozoa, Staurozoa and Cubozoa, and possibly the parasitic Polypodiozoa. Medusozoans are distinguished by having a medusa stage in their often complex life cycle, a medusa typically being an umbrella-shaped body with stinging tentacles around the edge. With the exception of some Hydrozoa, all are called jellyfish in their free-swimming medusa phase.

A mitosome is a mitochondrion-related organelle (MRO) found in a variety of parasitic unicellular eukaryotes, such as members of the supergroup Excavata. The mitosome was first discovered in 1999 in Entamoeba histolytica, an intestinal parasite of humans, and mitosomes have also been identified in several species of Microsporidia and in Giardia intestinalis.

<span class="mw-page-title-main">Protozoan infection</span> Parasitic disease caused by a protozoan

Protozoan infections are parasitic diseases caused by organisms formerly classified in the kingdom Protozoa. These organisms are now classified in the supergroups Excavata, Amoebozoa, Harosa, and Archaeplastida. They are usually contracted by either an insect vector or by contact with an infected substance or surface.

Chromera velia, also known as a "chromerid", is a unicellular photosynthetic organism in the superphylum Alveolata. It is of interest in the study of apicomplexan parasites, specifically their evolution and accordingly, their unique vulnerabilities to drugs.

<span class="mw-page-title-main">Holozoa</span> Clade containing animals and some protists

Holozoa is a clade of organisms that includes animals and their closest single-celled relatives, but excludes fungi and all other organisms. Together they amount to more than 1.5 million species of purely heterotrophic organisms, including around 300 unicellular species. It consists of various subgroups, namely Metazoa and the protists Choanoflagellata, Filasterea, Pluriformea and Ichthyosporea. Along with fungi and some other groups, Holozoa is part of the Opisthokonta, a supergroup of eukaryotes. Choanofila was previously used as the name for a group similar in composition to Holozoa, but its usage is discouraged now because it excludes animals and is therefore paraphyletic.

<i>Proteromonas</i> Genus of single-celled organisms

Proteromonas is a genus of single-celled biflagellated microbial eukaryotes belonging to the Superphylum Stramenopiles which are characterized by the presence of tripartite, hair-like structures on the anteriorly-directed larger of the two flagella. Proteromonas on the other hand are notable by having tripartite hairs called somatonemes not on the flagella but on the posterior of the cell. Proteromonas are closely related to Karotomorpha and Blastocystis, which belong to the Opalines group.

Rosculus is a genus of parasitic organisms which are poorly studied. Taxonomically, Rosculus is currently accepted to be in the family Sainouroidea, which contains a sister genus and Rosculus. Many species in this genus are aquatic, but genomic data shows that some species are terrestrial. Rosculus is thought to thrive in anaerobic and aerobic environments. This protist if very small in size, and it contains a massive genome. One defining characteristic of Rosculus is its discoidal cristae but morphologically.

<span class="mw-page-title-main">Fish diseases and parasites</span> Disease that affects fish

Like humans and other animals, fish suffer from diseases and parasites. Fish defences against disease are specific and non-specific. Non-specific defences include skin and scales, as well as the mucus layer secreted by the epidermis that traps microorganisms and inhibits their growth. If pathogens breach these defences, fish can develop inflammatory responses that increase the flow of blood to infected areas and deliver white blood cells that attempt to destroy the pathogens.

<span class="mw-page-title-main">Diseases and parasites in salmon</span> Diseases and parasites in salmon

Diseases and parasites in salmon, trout and other salmon-like fishes of the family Salmonidae are also found in other fish species. The life cycle of many salmonids is anadromous, so such fish are exposed to parasites in fresh water, brackish water and saline water.

<i>Henneguya</i> Genus of marine parasites

Henneguya is a genus of myxosporean parasites belonging to the family Myxobolidae.

References

  1. 1 2 "Henneguya salminicola". fishpathogens.net. Oregon State University. Oregon Department of Fish and Wildlife. Archived from the original on 2020-02-28. Retrieved 2020-02-28.
  2. Ward, Henry B. (1919). "Notes on North American Myxosporidia". The Journal of Parasitology. 6 (2): 49–64. doi:10.2307/3270895. JSTOR   3270895. S2CID   88435361. Archived from the original on 2021-08-17. Retrieved 2021-08-04.
  3. Greenwood, Veronique (28 February 2020). "This Parasite Doesn't Need Oxygen to Survive - But that's not the weirdest thing about this jellyfish cousin that turns up in the muscles of salmon". The New York Times . Archived from the original on 30 April 2023. Retrieved 5 March 2020.
  4. 1 2 3 Yahalomi, Dayana; Atkinson, Stephen; Neuhof, Moran; Chang, E. Sally; Phillipe, Hervé; Cartwright, Paulyn; Bartholomew, Jerri; Hutchon, Dorothée (2020). "A cnidarian parasite of salmon (Myxozoa: Henneguya) lacks a mitochondrial genome". Proceedings of the National Academy of Sciences. 117 (10): 5358–5363. Bibcode:2020PNAS..117.5358Y. doi: 10.1073/pnas.1909907117 . PMC   7071853 . PMID   32094163.
  5. "First Known Non-oxygen Breathing Animal".
  6. Meyers, T. R.; Burton, T.; Bentz, C.; Starkey, N. (July 2008). Common diseases of wild and cultured fishes in Alaska (PDF). Fish Pathology Laboratories. Alaska Department of Fish and Game. Archived from the original (PDF) on 2019-07-19. Retrieved 2020-03-04.
  7. "Spores of H. salminicola from a human stool specimen" via ResearchGate.
  8. 1 2 Brandon Specktor (24 February 2020). "Scientists discover first known animal that doesn't breathe". Live Science. Archived from the original on 27 June 2023. Retrieved 5 April 2020.
  9. Yahalomi, Dayana; Atkinson, Stephen D.; Neuhof, Moran; Chang, E. Sally; Philippe, Hervé; Cartwright, Paulyn; Bartholomew, Jerri L.; Huchon, Dorothée (19 February 2020). "A cnidarian parasite of salmon (Myxozoa: Henneguya) lacks a mitochondrial genome". Proceedings of the National Academy of Sciences. 117 (10): 5358–5363. Bibcode:2020PNAS..117.5358Y. doi: 10.1073/pnas.1909907117 . PMC   7071853 . PMID   32094163.; Lay summary: "Unique non-oxygen breathing animal discovered: The tiny relative of the jellyfish is parasitic and dwells in salmon tissue". ScienceDaily. Archived from the original on 2020-02-26. Retrieved 2020-02-28.
  10. Starr, Michelle (2024-06-21). "This Is The First Animal Ever Found That Doesn't Need Oxygen to Survive". Nature. Science Alert . Retrieved 2024-06-23.
  11. Panchin, A. Y.; Aleoshin, V. V.; Panchin, Y. V. (2019-01-23). "From tumors to species: a SCANDAL hypothesis". Biology Direct. 14 (1): 3. doi: 10.1186/s13062-019-0233-1 . ISSN   1745-6150. PMC   6343361 . PMID   30674330.
  12. Panchin, A. Y.; Aleoshin, V. V.; Panchin, Y. V. (2019-01-23). "From tumors to species: a SCANDAL hypothesis". Biology Direct. 14 (1): 3. doi: 10.1186/s13062-019-0233-1 . ISSN   1745-6150. PMC   6343361 . PMID   30674330.
  13. Buchtová, H.; Dyková, I.; Vršková, D.; Krkoška, L. (2004). "Záchyt lososa masivně infikovaného myxosporidií Henneguya zschokkei" [Myxosporidia Henneguya zschokkei massive infection in a salmon]. Veterinářství (in Czech). 54: 47–48. Archived from the original on 2021-08-04. Retrieved 2021-08-04.

Further reading