Aeroplankton

Last updated

Sea spray containing marine microorganisms can be swept high into the atmosphere and may travel the globe before falling back to earth. Ocean mist and spray 2.jpg
Sea spray containing marine microorganisms can be swept high into the atmosphere and may travel the globe before falling back to earth.

Aeroplankton (or aerial plankton) are tiny lifeforms that float and drift in the air, carried by wind. Most of the living things that make up aeroplankton are very small to microscopic in size, and many can be difficult to identify because of their tiny size. Scientists collect them for study in traps and sweep nets from aircraft, kites or balloons. [1] The study of the dispersion of these particles is called aerobiology.

Contents

Aeroplankton is made up mostly of microorganisms, including viruses, about 1,000 different species of bacteria, around 40,000 varieties of fungi, and hundreds of species of protists, algae, mosses, and liverworts that live some part of their life cycle as aeroplankton, often as spores, pollen, and wind-scattered seeds. Additionally, microorganisms are swept into the air from terrestrial dust storms, and an even larger amount of airborne marine microorganisms are propelled high into the atmosphere in sea spray. Aeroplankton deposits hundreds of millions of airborne viruses and tens of millions of bacteria every day on every square meter around the planet.

Small, drifting aeroplankton are found everywhere in the atmosphere, reaching concentration up to 106 microbial cells per cubic metre. Processes such as aerosolization and wind transport determine how the microorganisms are distributed in the atmosphere. Air mass circulation globally disperses vast numbers of the floating aerial organisms, which travel across and between continents, creating biogeographic patterns by surviving and settling in remote environments. As well as the colonization of pristine environments, the globetrotting behaviour of these organisms has human health consequences. Airborne microorganisms are also involved in cloud formation and precipitation, and play important roles in the formation of the phyllosphere, a vast terrestrial habitat involved in nutrient cycling.

Overview

Sampling airborne microorganisms
Left: Impinger sampling of bioaerosols
Right: Six-stage Andersen cascade impactor Samplers of airborne microorganisms 2.png
Sampling airborne microorganisms
Left: Impinger sampling of bioaerosols
Right: Six-stage Andersen cascade impactor

The atmosphere is the least understood biome on Earth despite its critical role as a microbial transport medium. [2] Recent studies have shown microorganisms are ubiquitous in the atmosphere and reach concentration up to 106 microbial cells per cubic metre (28,000/cu ft) [3] and that they might be metabolically active. [4] [5] Different processes, such as aerosolisation, might be important in selecting which microorganisms exist in the atmosphere. [6] Another process, microbial transport in the atmosphere, is critical for understanding the role microorganisms play in meteorology, atmospheric chemistry and public health. [6]

Changes in species geographic distributions can have strong ecological and socioeconomic consequences. [7] In the case of microorganisms, air mass circulation disperses vast amounts of individuals and interconnects remote environments. Airborne microorganisms can travel between continents, [8] survive and settle on remote environments, [9] which creates biogeographic patterns. [10] The circulation of atmospheric microorganisms results in global health concerns and ecological processes such as widespread dispersal of both pathogens [11] and antibiotic resistances, [12] cloud formation and precipitation, [8] and colonization of pristine environments. [9] Airborne microorganisms also play a role in the formation of the phyllosphere, which is one of the vastest habitats on the Earth's surface [13] involved in nutrient cycling. [14] [15] [16]

The field of bioaerosol research studies the taxonomy and community composition of airborne microbial organisms, also referred to as the air microbiome. A recent series of technological and analytical advancements include high-volumetric air samplers, an ultra-low biomass processing pipeline, low-input DNA sequencing libraries, as well as high-throughput sequencing technologies. Applied in unison, these methods have enabled comprehensive and meaningful characterization of the airborne microbial organismal dynamics found in the near-surface atmosphere. [17] Airborne microbial organisms also impact agricultural productivity, as bacterial and fungal species distributed by air movement act as plant blights. [18] Furthermore, atmospheric processes, such as cloud condensation and ice nucleation events were shown to depend on airborne microbial particles. [19] Therefore, understanding the dynamics of microbial organisms in air is crucial for insights into the atmosphere as an ecosystem, but also will inform on human wellbeing and respiratory health. [20]

In recent years, next generation DNA sequencing technologies, such as metabarcoding as well as coordinated metagenomics and metatranscriptomics studies, have been providing new insights into microbial ecosystem functioning, and the relationships that microorganisms maintain with their environment. There have been studies in soils, [21] the ocean, [22] [23] the human gut, [24] and elsewhere. [25] [26] [27] [28]

In the atmosphere, though, microbial gene expression and metabolic functioning remain largely unexplored, in part due to low biomass and sampling difficulties. [27] So far, metagenomics has confirmed high fungal, bacterial, and viral biodiversity, [29] [30] [31] [32] and targeted genomics and transcriptomics towards ribosomal genes has supported earlier findings about the maintenance of metabolic activity in aerosols [33] [34] and in clouds. [35] In atmospheric chambers airborne bacteria have been consistently demonstrated to react to the presence of a carbon substrate by regulating ribosomal gene expressions. [36] [27]

Types

Pollen grains

Effective pollen dispersal is vital for maintenance of genetic diversity and fundamental for connectivity between spatially separated populations. [37] An efficient transfer of the pollen guarantees successful reproduction in flowering plants. No matter how pollen is dispersed, the male-female recognition is possible by mutual contact of stigma and pollen surfaces. Cytochemical reactions are responsible for pollen binding to a specific stigma. [38] [39]

Allergic diseases are considered to be one of the most important contemporary public health problems affecting up to 15–35% of humans worldwide. [40] There is a body of evidence suggesting that allergic reactions induced by pollen are on the increase, particularly in highly industrial countries. [40] [41] [39]

Colourised SEM image of pollen grains from common plants Misc pollen colorized.jpg
Colourised SEM image of pollen grains from common plants
Pollen grains observed in aeroplankton of South Europe Pollen grains observed in aeroplankton of South Europe.png
Pollen grains observed in aeroplankton of South Europe

Fungal spores

Drawings of fungal spores found in air
Some cause asthma, such as Alternaria alternata. A drawing of a very small "dust" seed from the flower Orchis maculata is provided for comparison.
A = ascospore, B = basidiospore, M = mitospore Drawings of fungal spores found in air.tif
Drawings of fungal spores found in air
Some cause asthma, such as Alternaria alternata . A drawing of a very small "dust" seed from the flower Orchis maculata is provided for comparison.
    A = ascospore, B = basidiospore, M = mitospore

Fungi, a major element of atmospheric bioaerosols, are capable of existing and surviving in the air for extended periods of time. [44] Both the spores and the mycelium may be dangerous for people suffering from allergies, causing various health issues including asthma. [45] [46] Apart from their negative impact on human health, atmospheric fungi may be dangerous for plants as sources of infection. [47] [48] Moreover, fungal organisms may be capable of creating additional toxins that are harmful to humans and animals, such as endotoxins or mycotoxins. [49] [50]

Considering this aspect, aeromycological research is considered capable of predicting future symptoms of plant diseases in both crops and wild plants. [47] [48] Fungi capable of travelling extensive distances with wind despite natural barriers, such as tall mountains, may be particularly relevant to understanding the role of fungi in plant disease. [51] [52] [47] [53] Notably, the presence of numerous fungal organisms pathogenic to plants has been determined in mountainous regions. [50]

A wealth of correlative evidence suggests asthma is associated with fungi and triggered by elevated numbers of fungal spores in the environment. [54] Intriguing are reports of thunderstorm asthma. In a now classic study from the United Kingdom, an outbreak of acute asthma was linked to increases in Didymella exitialis ascospores and Sporobolomyces basidiospores associated with a severe weather event. [55] Thunderstorms are associated with spore plumes: when spore concentrations increase dramatically over a short period of time, for example from 20,000 spores/m3 to over 170,000 spores/m3 in 2 hours. [56] However, other sources consider pollen or pollution as causes of thunderstorm asthma. [57] Transoceanic and transcontinental dust events move large numbers of spores across vast distances and have the potential to impact public health, [58] and similar correlative evidence links dust blown off the Sahara with pediatric emergency room admissions on the island of Trinidad. [59] [42]

Pteridophyte spores

Pteridophyta spores, including fern spores, in the air of Lublin Pteridophyta spores in the air of Lublin.png
Pteridophyta spores, including fern spores, in the air of Lublin
Pteridophyte life cycle Pteridophyte lifecycle.jpg
Pteridophyte life cycle

Pteridophytes are vascular plants that disperse spores, such as fern spores. Pteridophyte spores are similar to pollen grains and fungal spores, and are also components of aeroplankton. [60] [61] Fungal spores usually rank first among bioaerosol constituents due to their count numbers which can reach to between 1,000 and 10,000 per cubic metre (28 and 283/cu ft), while pollen grains and fern spores can each reach to between 10 and 100 per cubic metre (0.28 and 2.83/cu ft). [41] [62]

Arthropods

Spider ballooning structures. Black, thick points represent the spider's body. Black lines represent ballooning threads. Spider ballooning structures.png
Spider ballooning structures. Black, thick points represent the spider's body. Black lines represent ballooning threads.

Many small animals, mainly arthropods (such as insects and spiders), are also carried upwards into the atmosphere by air currents and may be found floating several thousand feet up. Aphids, for example, are frequently found at high altitudes.

Ballooning, sometimes called kiting, is a process by which spiders, and some other small invertebrates, move through the air by releasing one or more gossamer threads to catch the wind, causing them to become airborne at the mercy of air currents. [64] [65] A spider (usually limited to individuals of a small species), or spiderling after hatching, [66] will climb as high as it can, stand on raised legs with its abdomen pointed upwards ("tiptoeing"), [67] and then release several silk threads from its spinnerets into the air. These automatically form a triangular shaped parachute [68] which carries the spider away on updrafts of winds where even the slightest of breezes will disperse the arachnid. [67] [68] The flexibility of their silk draglines can aid the aerodynamics of their flight, causing the spiders to drift an unpredictable and sometimes long distance. [69] Even atmospheric samples collected from balloons at 5 km (3.1 mi) altitude and ships mid-ocean have reported spider landings. Mortality is high. [70]

Enough lift for ballooning may occur, even in windless conditions, if an electrostatic charge gradient is present in the atmosphere. [71]

Nematodes

Distribution modes and possible geographic ranges of nematodes DIstribution modes and possible geographic ranges of nematodes.webp
Distribution modes and possible geographic ranges of nematodes

Nematodes (roundworms), the most common animal taxon, are also found among aeroplankton. [73] [74] [75] Nematodes are an essential trophic link between unicellular organisms like bacteria, and larger organisms such as tardigrades, copepods, flatworms, and fishes. [76] For nematodes, anhydrobiosis is a widespread strategy allowing them to survive unfavorable conditions for months and even years. [77] [78] Accordingly, nematodes can be readily dispersed by wind. However, as reported by Vanschoenwinkel et al., [75] nematodes account for only about one per cent of wind-drifted animals. Among the habitats colonized by nematodes are those that are strongly exposed to wind erosion as e.g., the shorelines of permanent waters, soils, mosses, dead wood, and tree bark. [79] [76] In addition, within a few days of forming temporary waters such as phytotelmata were shown to be colonized by numerous nematode species. [80] [81] [76]

Unicellular microorganisms

A stream of unicellular airborne microorganisms circles the planet above weather systems but below commercial air lanes. [82] Some microorganisms are swept up from terrestrial dust storms, but most originate from marine microorganisms in sea spray. In 2018, scientists reported that hundreds of millions of viruses and tens of millions of bacteria are deposited daily on every square meter around the planet. [83] [84]

The presence of airborne cyanobacteria and microalgae as well as their negative impacts on human health have been documented by many researchers worldwide. However, studies on cyanobacteria and microalgae are few compared with those on other bacteria and viruses. Research is especially lacking on the presence and taxonomic composition of cyanobacteria and microalgae near economically important water bodies with much tourism. [85] Research on airborne algae is especially important in tourist areas near water-bodies. Sunbathers are exposed to particularly high quantities of harmful cyanobacteria and microalgae. Additionally, harmful microalgae and cyanobacteria blooms tend to occur in both marine and freshwater reservoirs during summer. [86] [87] [88] [89] Previous work has shown that the Mediterranean Sea is dominated by the picocyanobacteria Synechococcus sp. and Synechocystis sp., which are responsible for the production of a group of hepatotoxins known as microcystins. [90] Because most tourism occurs in summer, many tourists are exposed to the most extreme negative impacts of airborne microalgae. [85]

Comparison of windborne and surface-water prokaryote
(bacteria plus archaea) communities over the Red Sea, showing
their relative abundance during two years of DNA sequencing. Comparison of aeolian and surface-water prokaryote communities 2.jpg
Comparison of windborne and surface-water prokaryote
(bacteria plus archaea) communities over the Red Sea, showing
their relative abundance during two years of DNA sequencing.

Airborne bacteria are emitted by most Earth surfaces (plants, oceans, land, and urban areas) to the atmosphere via a variety of mechanical processes such as aeolian soil erosion, sea spray production, or mechanical disturbances including anthropogenic activities. [92] [93] Due to their relatively small size (the median aerodynamic diameter of bacteria-containing particles is around 2–4 μm), [62] these can then be transported upward by turbulent fluxes [94] and carried by wind to long distances. As a consequence, bacteria are present in the air up to at least the lower stratosphere. [95] [96] [97] Given that the atmosphere is a large conveyor belt that moves air over thousands of kilometers, microorganisms are disseminated globally. [98] [99] [100] Airborne transport of microbes is therefore likely pervasive at the global scale, yet there have been only a limited number of studies that have looked at the spatial distribution of microbes across different geographical regions. [10] [100] One of the main difficulties is linked with the low microbial biomass associated with a high diversity existing in the atmosphere outdoor (~102–105 cells/m3) [101] [102] [35] thus requiring reliable sampling procedures and controls. Furthermore, the site location and its environmental specificities have to be accounted for to some extent by considering chemical and meteorological variables. [103] [104]

The environmental role of airborne cyanobacteria and microalgae is only partly understood. While present in the air, cyanobacteria and microalgae can contribute to ice nucleation and cloud droplet formation. Cyanobacteria and microalgae can also impact human health. [62] [105] [106] [107] [108] [109] Depending on their size, airborne cyanobacteria and microalgae can be inhaled by humans and settle in different parts of the respiratory system, leading to the formation or intensification of numerous diseases and ailments, e.g., allergies, dermatitis, and rhinitis. [106] [110] [111] According to Wiśniewska et al., [105] these harmful microorganisms can constitute between 13% and 71% of sampled taxa. [85] However, the interplay between microbes and atmospheric physical and chemical conditions is an open field of research that can only be fully addressed using multidisciplinary approaches. [104]

Airborne microalgae and cyanobacteria are the most poorly studied organisms in aerobiology and phycology. [112] [113] [85] This lack of knowledge may result from the lack of standard methods for both sampling and further analysis, especially quantitative analytical methods. [105] Few studies have been performed to determine the number of cyanobacteria and microalgae in the atmosphere [114] [115] However, it was shown in 2012 that the average quantity of atmospheric algae is between 100 and 1000 cells per cubic meter of air. [62] As of 2019, about 350 taxa of cyanobacteria and microalgae have been documented in the atmosphere worldwide. [105] [106] Cyanobacteria and microalgae end up in the air as a consequence of their emission from soil, buildings, trees, and roofs. [105] [116] [117] [85]

Biological particles are known to represent a significant fraction (~20–70%) of the total number of aerosols > 0.2 μm, with large spatial and temporal variations. [118] [119] [120] [121] Among these, microorganisms are of particular interest in fields as diverse as epidemiology, including phytopathology, [122] bioterrorism, forensic science, and public health, [123] and environmental sciences, like microbial ecology, [124] [125] [93] meteorology and climatology. [126] [127] More precisely concerning the latter, airborne microorganisms contribute to the pool of particles nucleating the condensation and crystallization of water and they are thus potentially involved in cloud formation and in the triggering of precipitation. [128] [129] Additionally, viable microbial cells act as chemical catalyzers interfering with atmospheric chemistry. [130] The constant flux of bacteria from the atmosphere to the Earth's surface due to precipitation and dry deposition can also affect global biodiversity, but they are rarely taken into account when conducting ecological surveys. [84] [131] [132] [133] As stressed by these studies attempting to decipher and understand the spread of microbes over the planet, [134] [102] [135] concerted data are needed for documenting the abundance and distribution of airborne microorganisms, including at remote and altitudes sites. [104]

Bioaerosols

Bioaerosols, known also as primary biological aerosols, are the subset of atmospheric particles that are directly released from the biosphere into the atmosphere. They include living and dead organisms (e.g., algae, archaea, bacteria [136] [137] [138] ), dispersal units (e.g., fungal spores and plant pollen [139] ), and various fragments or excretions (e.g., plant debris and brochosomes). [140] [141] [62] [119] [142] [143] Bioaerosol particle diameters range from nanometers up to about a tenth of a millimeter. The upper limit of the aerosol particle size range is determined by rapid sedimentation, i.e., larger particles are too heavy to remain airborne for extended periods of time. [144] [145] [129] Bioaerosols include living and dead organisms as well as their fragments and excrements emitted from the biosphere into the atmosphere. [146] [62] [129] Included are archaea, fungi, microalgae, cyanobacteria, bacteria, viruses, plant cell debris, and pollen. [146] [62] [129] [112] [105]

Historically, the first investigations of the occurrence and dispersion of microorganisms and spores in the air can be traced back to the early 19th century. [147] [148] [149] Since then, the study of bioaerosols has come a long way, and air samples collected with aircraft, balloons, and rockets have shown that bioaerosols released from land and ocean surfaces can be transported over long distances and up to very high altitudes, i.e., between continents and beyond the troposphere. [150] [96] [151] [152] [153] [154] [155] [156] [157] [158] [99] [129]

Bioaerosols play a key role in the dispersal of reproductive units from plants and microbes (pollen, spores, etc.), for which the atmosphere enables transport over geographic barriers and long distances. [150] [134] [101] [62] [143] Bioaerosols are thus highly relevant for the spread of organisms, allowing genetic exchange between habitats and geographic shifts of biomes. They are central elements in the development, evolution, and dynamics of ecosystems. [129]

Dispersal

Dispersal is a vital component of an organism's life-history, [160] and the potential for dispersal determines the distribution, abundance, and thus, the community dynamics of species at different sites. [161] [162] [163] A new habitat must first be reached before filters such as organismal abilities and adaptations, the quality of a habitat, and the established biological community determine the colonization efficiency of a species. [164] While larger animals can cover distances on their own and actively seek suitable habitats, small (<2 mm) organisms are often passively dispersed, [164] resulting in their more ubiquitous occurrence. [165] While active dispersal accounts for rather predictable distribution patterns, passive dispersal leads to a more randomized immigration of organisms. [161] Mechanisms for passive dispersal are the transport on (epizoochory) or in (endozoochory) larger animals (e.g., flying insects, birds, or mammals) and the erosion by wind. [164] [76]

A propagule is any material that functions in propagating an organism to the next stage in its life cycle, such as by dispersal. The propagule is usually distinct in form from the parent organism. Propagules are produced by plants (in the form of seeds or spores), fungi (in the form of spores), and bacteria (for example endospores or microbial cysts). [166] Often cited as an important requirement for effective wind dispersal is the presence of propagules (e.g., resting eggs, cysts, ephippia, juvenile and adult resting stages), [164] [167] [73] which also enables organisms to survive unfavorable environmental conditions until they enter a suitable habitat. These dispersal units can be blown from surfaces such as soil, moss, and the desiccated sediments of temporary or intermittent waters. The passively dispersed organisms are typically pioneer colonizers. [74] [168] [80] [76]

However, wind-drifted species vary in their vagility (probability to be transported with the wind), [169] with the weight and form of the propagules, and therefore, the wind speed required for their transport, [170] determining the dispersal distance. For example, in nematodes, resting eggs are less effectively transported by wind than other life stages, [171] while organisms in anhydrobiosis are lighter and thus more readily transported than hydrated forms. [172] [173] Because different organisms are, for the most part, not dispersed over the same distances, source habitats are also important, with the number of organisms contained in air declining with increasing distance from the source system. [74] [75] The distances covered by small animals range from a few meters, [75] to hundreds, [74] to thousands of meters. [171] While the wind dispersal of aquatic organisms is possible even during the wet phase of a transiently aquatic habitat, [164] during the dry stages a larger number of dormant propagules are exposed to wind and thus dispersed. [73] [75] [174] Freshwater organisms that must "cross the dry ocean" [164] to enter new aquatic island systems will be passively dispersed more successfully than terrestrial taxa. [164] Numerous taxa from both soil and freshwater systems have been captured from the air (e.g., bacteria, several algae, ciliates, flagellates, rotifers, crustaceans, mites, and tardigrades). [74] [75] [174] [175] While these have been qualitatively well studied, accurate estimates of their dispersal rates are lacking. [76]

Transport and distribution

Once aerosolized, microbial cells enter the planetary boundary layer, defined as the air layer near the ground directly influenced by the planetary surface. The concentration and taxonomic diversity of airborne microbial communities in the planetary boundary layer has been recently described, [177] [178] [6] though the functional potential of airborne microbial communities remains unknown. [179]

From the planetary boundary layer, the microbial community might eventually be transported upwards by air currents into the free troposphere (air layer above the planetary boundary layer) or even higher into the stratosphere. [100] [180] [97] [181] Microorganisms might undergo a selection process during their way up into the troposphere and the stratosphere. [182] [6]

Subject to gravity, aerosols (or particulate matter) as well as bioaerosols become concentrated in the lower part of the troposphere that is called the planetary boundary layer. Microbial concentrations thus usually show a vertical stratification from the bottom to the top of the troposphere with average estimated bacterial concentrations of 900 to 2 × 107 cells per cubic metre in the planetary boundary layer [3] [183] [184] [185] [186] and 40 to 8 × 104 cells per cubic metre in the highest part of the troposphere called the free troposphere. [187] [188] [96] The troposphere is the most dynamic layer in terms of chemistry and physics of aerosols and harbors complex chemical reactions and meteorological phenomena that lead to the coexistence of a gas phase, liquid phases (i.e., cloud, rain, and fog water) and solid phases (i.e., microscopic particulate matter, sand dust). The various atmospheric phases represent multiple biological niches. [176]

Possible processes in the way atmospheric microbial communities can distribute themselves have recently been investigated in meteorology, [3] [4] [10] [178] [189] seasons, [178] [190] [191] [102] [192] surface conditions [189] [190] [191] [192] and global air circulation. [178] [193] [184] [194] [125] [6]

Over space and time

Microorganisms attached to aerosols can travel intercontinental distances, survive, and further colonize remote environments. Airborne microbes are influenced by environmental and climatic patterns that are predicted to change in the near future, with unknown consequences. [16] Airborne microbial communities play significant roles in public health and meteorological processes, [195] [196] [11] [197] [198] so it is important to understand how these communities are distributed over time and space. [179]

Most studies have focused on laboratory cultivation to identify possible metabolic functions of microbial strains of atmospheric origin, mainly from cloud water. [199] [200] [201] [202] [203] Given that cultivable organisms represent about 1% of the entire microbial community, [204] culture-independent techniques and especially metagenomic studies applied to atmospheric microbiology have the potential to provide additional information on the selection and genetic adaptation of airborne microorganisms. [179]

There are some metagenomic studies on airborne microbial communities over specific sites. [205] [206] [207] [17] [208] Metagenomic investigations of complex microbial communities in many ecosystems (for example, soil, seawater, lakes, feces and sludge) have provided evidence that microorganism functional signatures reflect the abiotic conditions of their environment, with different relative abundances of specific microbial functional classes. [209] [210] [211] [212] This observed correlation of microbial-community functional potential and the physical and chemical characteristics of their environments could have resulted from genetic modifications (microbial adaptation [213] [214] [215] [208] ) and/or physical selection. The latter refers to the death of sensitive cells and the survival of resistant or previously adapted cells. This physical selection can occur when microorganisms are exposed to physiologically adverse conditions. [179]

The presence of a specific microbial functional signature in the atmosphere has not been investigated yet. [179] Microbial strains of airborne origin have been shown to survive and develop under conditions typically found in cloud water (i.e., high concentrations of H2O2, typical cloud carbonaceous sources, ultraviolet – UV – radiation etc. [199] [216] [203] While atmospheric chemicals might lead to some microbial adaptation, physical and unfavorable conditions of the atmosphere such as UV radiation, low water content and cold temperatures might select which microorganisms can survive in the atmosphere. From the pool of microbial cells being aerosolized from Earth's surfaces, these adverse conditions might act as a filter in selecting cells already resistant to unfavorable physical conditions. Fungal cells and especially fungal spores might be particularly adapted to survive in the atmosphere due to their innate resistance [217] and might behave differently than bacterial cells. Still, the proportion and nature (i.e., fungi versus bacteria) of microbial cells that are resistant to the harsh atmospheric conditions within airborne microbial communities are unknown. [179]

Airborne microbial transport is central to dispersal outcomes [218] and several studies have demonstrated diverse microbial biosignatures are recoverable from the atmosphere. Microbial transport has been shown to occur across inter-continental distances above terrestrial habitats. [219] [220] [193] Variation has been recorded seasonally, with underlying land use, [190] and due to stochastic weather events such as dust storms. [221] [2] There is evidence specific bacterial taxa (e.g., Actinomycetota and some Gammaproteobacteria) are preferentially aerosolized from oceans. [222] [6]

Over urban areas

Dust storms as a source of aerosolized bacteria Dust storms as a source of aerosolized bacteria.png
Dust storms as a source of aerosolized bacteria

As a result of rapid industrialization and urbanization, global megacities have been impacted by extensive and intense particulate matter pollution events, [223] which have potential human health consequences. [224] [225] [226] Severe particulate matter pollution is associated with chronic obstructive pulmonary disease and asthma, as well as risks for early death. [227] [228] [229] [230] While the chemical components of particulate matter pollution and their impacts on human health have been widely studied, [231] the potential impact of pollutant-associated microbes remains unclear. Airborne microbial exposure, including exposure to dust-associated organisms, has been established to both protect against and exacerbate certain diseases. [232] [233] [234] Understanding the temporal dynamics of the taxonomic and functional diversity of microorganisms in urban air, especially during smog events, will improve understanding of the potential microbe-associated health consequences. [235] [236] [237]

Recent advances in airborne particle DNA extraction and metagenomic library preparation have enabled low biomass environments to be subject to shotgun sequencing analysis. [236] [237] In 2020, Qin et al. used shotgun sequencing analysis to reveal a great diversity of microbial species and antibiotic resistant genes in Beijing's particulate matter, largely consistent with a recent study. [238] The data suggest that potential pathogen and antibiotic resistance burden increases with increasing pollution levels and that severe smog events promote the exposure. In addition, the particulate matter also contained several bacteria that harbored antibiotic resistant genes flanked by mobile genetic elements, which could be associated with horizontal gene transfer. Many of these bacteria were typical or putative members of the human microbiome. [237]

Clouds

Clouds can transport microorganisms and disperse them over long distances. Beautiful cloud.jpg
Clouds can transport microorganisms and disperse them over long distances.
Impact of microbial activity on clouds
Biological processes and their targets are indicated by green arrows, while red arrows indicate abiotic processes.
EPS: Exopolysaccharide SOA: Secondary organic aerosol
Based on coordinated metagenomics/metatranscriptomics Impacts of microbial activity on cloud processes.webp
Impact of microbial activity on clouds
Biological processes and their targets are indicated by green arrows, while red arrows indicate abiotic processes.
EPS: Exopolysaccharide              SOA: Secondary organic aerosol
Based on coordinated metagenomics/metatranscriptomics

The outdoor atmosphere harbors diverse microbial assemblages composed of bacteria, fungi and viruses [240] whose functioning remains largely unexplored. [27] While the occasional presence of human pathogens or opportunists can cause potential hazard, [241] [242] in general the vast majority of airborne microbes originate from natural environments like soil or plants, with large spatial and temporal variations of biomass and biodiversity. [190] [35] Once ripped off and aerosolized from surfaces by mechanical disturbances such as those generated by wind, raindrop impacts or water bubbling, [243] [92] microbial cells are transported upward by turbulent fluxes. [94] They remain aloft for an average of ~3 days, [244] a time long enough for being transported across oceans and continents [100] [4] [10] until being finally deposited, eventually helped by water condensation and precipitation processes; microbial aerosols themselves can contribute to form clouds and trigger precipitation by serving as cloud condensation nuclei [245] and ice nuclei. [246] [8] [27]

Living airborne microorganisms may end up concretizing aerial dispersion by colonizing their new habitat, [247] provided that they survive their journey from emission to deposition. Bacterial survival is indeed naturally impaired during atmospheric transport, [248] [249] but a fraction remains viable. [250] [251] At high altitude, the peculiar environments offered by cloud droplets are thus regarded in some aspects as temporary microbial habitats, providing water and nutrients to airborne living cells. [252] [253] [199] In addition, the detection of low levels of heterotrophy [254] raises questions about microbial functioning in cloud water and its potential influence on the chemical reactivity of these complex and dynamic environments. [199] [130] The metabolic functioning of microbial cells in clouds is still albeit unknown, while fundamental for apprehending microbial life conditions during long distance aerial transport and their geochemical and ecological impacts. [27]

Aerosols affect cloud formation, thereby influencing sunlight irradiation and precipitation, but the extent to which and the manner in which they influence climate remains uncertain. [255] Marine aerosols consist of a complex mixture of sea salt, non-sea-salt sulfate and organic molecules and can function as nuclei for cloud condensation, influencing the radiation balance and, hence, climate. [256] [257] For example, biogenic aerosols in remote marine environments (for example, the Southern Ocean) can increase the number and size of cloud droplets, having similar effects on climate as aerosols in highly polluted regions. [257] [258] [259] [260] Specifically, phytoplankton emit dimethylsulfide, and its derivate sulfate promotes cloud condensation. [256] [261] Understanding the ways in which marine phytoplankton contribute to aerosols will allow better predictions of how changing ocean conditions will affect clouds and feed back on climate. [261] In addition, the atmosphere itself contains about 1022 microbial cells, and determining the ability of atmospheric microorganisms to grow and form aggregates will be valuable for assessing their influence on climate. [262] [263]

After the tantalizing detection of phosphine (PH3) in the atmosphere of the planet Venus, and in the absence of a known and plausible chemical mechanism to explain the formation of this molecule, Greaves et al. speculated in 2020 that microorganisms might be present in suspension in the Venusian atmosphere. [264] They have formulated the hypothesis of the microbial formation of phosphine, envisaging the possibility of a liveable window in the Venusian clouds at a certain altitude with an acceptable temperature range for microbial life. [264] However, in 2021 Hallsworth et al. examined the conditions required to support the life of extremophile microorganisms in the clouds at high altitude in the Venusian atmosphere where favorable temperature conditions might prevail. [265] Beside the presence of sulfuric acid in the clouds which already represent a major challenge for the survival of most of microorganisms, they came to the conclusion that the Venusian atmosphere is too dry to host microbial life. They determined a water activity ≤ 0.004, two orders of magnitude below the 0.585 limit for known extremophiles. [265]

Airborne microbiomes

While the physical and chemical properties of airborne particulate matter have been extensively studied, their associated airborne microbiome remains largely unexplored. [237] Microbiomes are defined as characteristic microbial communities, which include prokaryotes, fungi, protozoa, other micro-eukaryotes and viruses, that occupy well-defined habitats. [266] The term microbiome is broader than other terms, for example, microbial communities, microbial population, microbiota or microbial flora, as microbiome refers to both its composition (the microorganisms involved) and its functions (their members' activities and interactions with the host/environment), which contribute to ecosystem functions. [266] [267]

Throughout Earth's history, microbial communities have changed the climate, and climate has shaped microbial communities. [268] Microorganisms can modify ecosystem processes or biogeochemistry on a global scale, and we start to uncover their role and potential involvement in changing the climate. [269] However, the effects of climate change on microbial communities (i.e., diversity, dynamics, or distribution) are rarely addressed. [270] In the case of fungal aerobiota, its composition is likely influenced by dispersal ability, rather than season or climate. [271] Indeed, the origin of air masses from marine, terrestrial, or anthropogenic-impacted environments, mainly shapes the atmospheric air microbiome. [193] However, recent studies have shown that meteorological factors and seasonality influence the composition of airborne bacterial communities. [193] [272] [273] This evidence suggests that climatic conditions may act as an environmental filter for the aeroplankton, selecting a subset of species from the regional pool, and raises the question of the relative importance of the different factors affecting both bacterial and eukaryal aeroplankton. [16]

In 2020, Archer et al. reported evidence for a dynamic microbial presence at the ocean–atmosphere interface at the Great Barrier Reef, and identified air mass trajectories over oceanic and continental surfaces associated with observed shifts in airborne bacterial and fungal diversity. Relative abundance of shared taxa between air and coral microbiomes varied between 2.2 and 8.8% and included those identified as part of the core coral microbiome. [2] Above marine systems, the abundance of microorganisms decreases exponentially with distance from land, [125] but relatively little is known about potential patterns in biodiversity for airborne microorganisms above the oceans. Here we test the hypothesis that persistent microbial inputs to the ocean–atmosphere interface of the Great Barrier Reef ecosystem vary according to surface cover (i.e. land vs. ocean) during transit of the air-mass. [2]

Airborne DNA

In 2021, researchers demonstrated that environmental DNA (eDNA) can be collected from air and used to identify mammals. [274] [275] [276] [277] In 2023, scientists developed a specialized sampling probe and aircraft surveys to assess biodiversity of multiple taxa, including mammals, using air eDNA. [278]

See also

Related Research Articles

<span class="mw-page-title-main">Extremophile</span> Organisms capable of living in extreme environments

An extremophile is an organism that is able to live in extreme environments, i.e., environments with conditions approaching or stretching the limits of what known life can adapt to, such as extreme temperature, pressure, radiation, salinity, or pH level.

<span class="mw-page-title-main">Microorganism</span> Microscopic living organism

A microorganism, or microbe, is an organism of microscopic size, which may exist in its single-celled form or as a colony of cells.

<span class="mw-page-title-main">Aerobiology</span> Study of airborne organisms

Aerobiology is a branch of biology that studies the passive transport of organic particles, such as bacteria, fungal spores, very small insects, pollen grains and viruses. Aerobiologists have traditionally been involved in the measurement and reporting of airborne pollen and fungal spores as a service to those with allergies. However, aerobiology is a varied field, relating to environmental science, plant science, meteorology, phenology, and climate change.

<span class="mw-page-title-main">Microbial ecology</span> Study of the relationship of microorganisms with their environment

Microbial ecology is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life—Eukaryota, Archaea, and Bacteria—as well as viruses.

<span class="mw-page-title-main">Sea spray</span> Sea water particles that are formed directly from the ocean

Sea spray are aerosol particles formed from the ocean, mostly by ejection into Earth's atmosphere by bursting bubbles at the air-sea interface. Sea spray contains both organic matter and inorganic salts that form sea salt aerosol (SSA). SSA has the ability to form cloud condensation nuclei (CCN) and remove anthropogenic aerosol pollutants from the atmosphere. Coarse sea spray has also been found to inhibit the development of lightning in storm clouds.

<span class="mw-page-title-main">Bacteria</span> Domain of microorganisms

Bacteria are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps, extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane, to energy. Bacteria also live in mutualistic, commensal and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.

<span class="mw-page-title-main">Bioaerosol</span> Airborne particles containing living organisms

Bioaerosols are a subcategory of particles released from terrestrial and marine ecosystems into the atmosphere. They consist of both living and non-living components, such as fungi, pollen, bacteria and viruses. Common sources of bioaerosols include soil, water, and sewage.

<span class="mw-page-title-main">Sea surface microlayer</span> Boundary layer where all exchange occurs between the atmosphere and the ocean

The sea surface microlayer (SML) is the boundary interface between the atmosphere and ocean, covering about 70% of Earth's surface. With an operationally defined thickness between 1 and 1,000 μm (1.0 mm), the SML has physicochemical and biological properties that are measurably distinct from underlying waters. Recent studies now indicate that the SML covers the ocean to a significant extent, and evidence shows that it is an aggregate-enriched biofilm environment with distinct microbial communities. Because of its unique position at the air-sea interface, the SML is central to a range of global marine biogeochemical and climate-related processes.

<span class="mw-page-title-main">Extracellular polymeric substance</span> Gluey polymers secreted by microorganisms to form biofilms

Extracellular polymeric substances (EPSs) are natural polymers of high molecular weight secreted by microorganisms into their environment. EPSs establish the functional and structural integrity of biofilms, and are considered the fundamental component that determines the physicochemical properties of a biofilm. EPS in the matrix of biofilms provides compositional support and protection of microbial communities from the harsh environments. Components of EPS can be of different classes of polysaccharides, lipids, nucleic acids, proteins, lipopolysaccharides, and minerals.

<span class="mw-page-title-main">Bacterioplankton</span> Bacterial component of the plankton that drifts in the water column

Bacterioplankton refers to the bacterial component of the plankton that drifts in the water column. The name comes from the Ancient Greek word πλανκτος, meaning "wanderer" or "drifter", and bacterium, a Latin term coined in the 19th century by Christian Gottfried Ehrenberg. They are found in both seawater and freshwater.

Indoor bioaerosol is bioaerosol in an indoor environment. Bioaerosols are natural or artificial particles of biological origin suspended in the air. These particles are also referred to as organic dust. Bioaerosols may consist of bacteria, fungi, viruses, microbial toxins, pollen, plant fibers, etc. Size of bioaerosol particles varies from below 1 μm to 100 μm in aerodynamic diameter; viable bioaerosol particles can be suspended in air as single cells or aggregates of microorganism as small as 1–10 μm in size. Since bioaerosols are potentially related to various human health effects and the indoor environment provides a unique exposure situation, concerns about indoor bioaerosols have increased over the last decade.

<span class="mw-page-title-main">Marine microorganisms</span> Any life form too small for the naked human eye to see that lives in a marine environment

Marine microorganisms are defined by their habitat as microorganisms living in a marine environment, that is, in the saltwater of a sea or ocean or the brackish water of a coastal estuary. A microorganism is any microscopic living organism or virus, which is invisibly small to the unaided human eye without magnification. Microorganisms are very diverse. They can be single-celled or multicellular and include bacteria, archaea, viruses, and most protozoa, as well as some fungi, algae, and animals, such as rotifers and copepods. Many macroscopic animals and plants have microscopic juvenile stages. Some microbiologists also classify viruses as microorganisms, but others consider these as non-living.

Microbial biogeography is a subset of biogeography, a field that concerns the distribution of organisms across space and time. Although biogeography traditionally focused on plants and larger animals, recent studies have broadened this field to include distribution patterns of microorganisms. This extension of biogeography to smaller scales—known as "microbial biogeography"—is enabled by ongoing advances in genetic technologies.

<span class="mw-page-title-main">Microbiome</span> Microbial community assemblage and activity

A microbiome is the community of microorganisms that can usually be found living together in any given habitat. It was defined more precisely in 1988 by Whipps et al. as "a characteristic microbial community occupying a reasonably well-defined habitat which has distinct physio-chemical properties. The term thus not only refers to the microorganisms involved but also encompasses their theatre of activity". In 2020, an international panel of experts published the outcome of their discussions on the definition of the microbiome. They proposed a definition of the microbiome based on a revival of the "compact, clear, and comprehensive description of the term" as originally provided by Whipps et al., but supplemented with two explanatory paragraphs. The first explanatory paragraph pronounces the dynamic character of the microbiome, and the second explanatory paragraph clearly separates the term microbiota from the term microbiome.

<span class="mw-page-title-main">Sea ice microbial communities</span> Groups of microorganisms living within and at the interfaces of sea ice

Sea Ice Microbial Communities (SIMCO) refer to groups of microorganisms living within and at the interfaces of sea ice at the poles. The ice matrix they inhabit has strong vertical gradients of salinity, light, temperature and nutrients. Sea ice chemistry is most influenced by the salinity of the brine which affects the pH and the concentration of dissolved nutrients and gases. The brine formed during the melting sea ice creates pores and channels in the sea ice in which these microbes can live. As a result of these gradients and dynamic conditions, a higher abundance of microbes are found in the lower layer of the ice, although some are found in the middle and upper layers. Despite this extreme variability in environmental conditions, the taxonomical community composition tends to remain consistent throughout the year, until the ice melts.

<span class="mw-page-title-main">North Atlantic Aerosols and Marine Ecosystems Study</span>

The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) was a five-year scientific research program that investigated aspects of phytoplankton dynamics in ocean ecosystems, and how such dynamics influence atmospheric aerosols, clouds, and climate. The study focused on the sub-arctic region of the North Atlantic Ocean, which is the site of one of Earth's largest recurring phytoplankton blooms. The long history of research in this location, as well as relative ease of accessibility, made the North Atlantic an ideal location to test prevailing scientific hypotheses in an effort to better understand the role of phytoplankton aerosol emissions on Earth's energy budget.

<span class="mw-page-title-main">Marine viruses</span> Viruses found in marine environments

Marine viruses are defined by their habitat as viruses that are found in marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. Viruses are small infectious agents that can only replicate inside the living cells of a host organism, because they need the replication machinery of the host to do so. They can infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea.

<span class="mw-page-title-main">Marine prokaryotes</span> Marine bacteria and marine archaea

Marine prokaryotes are marine bacteria and marine archaea. They are defined by their habitat as prokaryotes that live in marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. All cellular life forms can be divided into prokaryotes and eukaryotes. Eukaryotes are organisms whose cells have a nucleus enclosed within membranes, whereas prokaryotes are the organisms that do not have a nucleus enclosed within a membrane. The three-domain system of classifying life adds another division: the prokaryotes are divided into two domains of life, the microscopic bacteria and the microscopic archaea, while everything else, the eukaryotes, become the third domain.

<span class="mw-page-title-main">Ocean surface ecosystem</span>

Organisms that live freely at the ocean surface, termed neuston, include keystone organisms like the golden seaweed Sargassum that makes up the Sargasso Sea, floating barnacles, marine snails, nudibranchs, and cnidarians. Many ecologically and economically important fish species live as or rely upon neuston. Species at the surface are not distributed uniformly; the ocean's surface provides habitat for unique neustonic communities and ecoregions found at only certain latitudes and only in specific ocean basins. But the surface is also on the front line of climate change and pollution. Life on the ocean's surface connects worlds. From shallow waters to the deep sea, the open ocean to rivers and lakes, numerous terrestrial and marine species depend on the surface ecosystem and the organisms found there.

References

  1. A. C. Hardy and P. S. Milne (1938) Studies in the Distribution of Insects by Aerial Currents. Journal of Animal Ecology, 7(2):199-229
  2. 1 2 3 4 Archer, Stephen D. J.; Lee, Kevin C.; Caruso, Tancredi; King-Miaow, Katie; Harvey, Mike; Huang, Danwei; Wainwright, Benjamin J.; Pointing, Stephen B. (2020). "Air mass source determines airborne microbial diversity at the ocean–atmosphere interface of the Great Barrier Reef marine ecosystem". The ISME Journal. 14 (3): 871–876. doi:10.1038/s41396-019-0555-0. PMC   7031240 . PMID   31754205. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  3. 1 2 3 Zhen, Quan; Deng, Ye; Wang, Yaqing; Wang, Xiaoke; Zhang, Hongxing; Sun, Xu; Ouyang, Zhiyun (2017). "Meteorological factors had more impact on airborne bacterial communities than air pollutants". Science of the Total Environment. 601–602: 703–712. Bibcode:2017ScTEn.601..703Z. doi:10.1016/j.scitotenv.2017.05.049. PMID   28577405. S2CID   4576024.
  4. 1 2 3 Šantl-Temkiv, Tina; Gosewinkel, Ulrich; Starnawski, Piotr; Lever, Mark; Finster, Kai (2018). "Aeolian dispersal of bacteria in southwest Greenland: Their sources, abundance, diversity and physiological states". FEMS Microbiology Ecology. 94 (4). doi: 10.1093/femsec/fiy031 . hdl: 20.500.11850/266148 . PMID   29481623.
  5. Klein, Ann M.; Bohannan, Brendan J. M.; Jaffe, Daniel A.; Levin, David A.; Green, Jessica L. (2016). "Molecular Evidence for Metabolically Active Bacteria in the Atmosphere". Frontiers in Microbiology. 7: 772. doi: 10.3389/fmicb.2016.00772 . PMC   4878314 . PMID   27252689.
  6. 1 2 3 4 5 6 Tignat-Perrier, Romie; Dommergue, Aurélien; Thollot, Alban; Keuschnig, Christoph; Magand, Olivier; Vogel, Timothy M.; Larose, Catherine (2019). "Global airborne microbial communities controlled by surrounding landscapes and wind conditions". Scientific Reports. 9 (1): 14441. Bibcode:2019NatSR...914441T. doi:10.1038/s41598-019-51073-4. PMC   6783533 . PMID   31595018. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  7. Pecl, Gretta T.; et al. (2017). "Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being". Science. 355 (6332). doi:10.1126/science.aai9214. hdl: 10019.1/120851 . PMID   28360268. S2CID   206653576.
  8. 1 2 3 Creamean, J. M.; Suski, K. J.; Rosenfeld, D.; Cazorla, A.; Demott, P. J.; Sullivan, R. C.; White, A. B.; Ralph, F. M.; Minnis, P.; Comstock, J. M.; Tomlinson, J. M.; Prather, K. A. (2013). "Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western U.S.". Science. 339 (6127): 1572–1578. Bibcode:2013Sci...339.1572C. doi:10.1126/science.1227279. PMID   23449996. S2CID   2276891.
  9. 1 2 Hervàs, Anna; Camarero, Lluís; Reche, Isabel; Casamayor, Emilio O. (2009). "Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe". Environmental Microbiology. 11 (6): 1612–1623. doi:10.1111/j.1462-2920.2009.01926.x. PMID   19453609.
  10. 1 2 3 4 Barberán, Albert; Ladau, Joshua; Leff, Jonathan W.; Pollard, Katherine S.; Menninger, Holly L.; Dunn, Robert R.; Fierer, Noah (2015). "Continental-scale distributions of dust-associated bacteria and fungi". Proceedings of the National Academy of Sciences. 112 (18): 5756–5761. Bibcode:2015PNAS..112.5756B. doi: 10.1073/pnas.1420815112 . PMC   4426398 . PMID   25902536.
  11. 1 2 Brown, James K. M.; Hovmøller, Mogens S. (2002). "Aerial Dispersal of Pathogens on the Global and Continental Scales and Its Impact on Plant Disease". Science. 297 (5581): 537–541. Bibcode:2002Sci...297..537B. doi:10.1126/science.1072678. PMID   12142520. S2CID   4207803.
  12. Mazar, Yinon; Cytryn, Eddie; Erel, Yigal; Rudich, Yinon (2016). "Effect of Dust Storms on the Atmospheric Microbiome in the Eastern Mediterranean". Environmental Science & Technology. 50 (8): 4194–4202. Bibcode:2016EnST...50.4194M. doi:10.1021/acs.est.5b06348. PMID   27001166.
  13. Griffin, Eric A.; Carson, Walter P. (2015). "The Ecology and Natural History of Foliar Bacteria with a Focus on Tropical Forests and Agroecosystems". The Botanical Review. 81 (2): 105–149. doi:10.1007/s12229-015-9151-9. S2CID   14608948.
  14. Guerrieri, Rossella; Lecha, Lucas; Mattana, Stefania; Cáliz, Joan; Casamayor, Emilio O.; Barceló, Anna; Michalski, Greg; Peñuelas, Josep; Avila, Anna; Mencuccini, Maurizio (2020). "Partitioning between atmospheric deposition and canopy microbial nitrification into throughfall nitrate fluxes in a Mediterranean forest". Journal of Ecology. 108 (2): 626–640. doi: 10.1111/1365-2745.13288 . hdl: 11585/790081 . S2CID   203880534.
  15. Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich (2016). "Bioaerosols in the Earth system: Climate, health, and ecosystem interactions". Atmospheric Research. 182: 346–376. Bibcode:2016AtmRe.182..346F. doi: 10.1016/j.atmosres.2016.07.018 .
  16. 1 2 3 Ontiveros, Vicente J.; Cáliz, Joan; Triadó-Margarit, Xavier; Alonso, David; Casamayor, Emilio O. (12 October 2021). "General decline in the diversity of the airborne microbiota under future climatic scenarios". Scientific Reports. 11 (1). Springer Science and Business Media LLC: 20223. Bibcode:2021NatSR..1120223O. doi:10.1038/s41598-021-99223-x. ISSN   2045-2322. PMC   8511268 . PMID   34642388. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  17. 1 2 Gusareva, Elena S.; et al. (2019). "Microbial communities in the tropical air ecosystem follow a precise diel cycle". Proceedings of the National Academy of Sciences. 116 (46): 23299–23308. Bibcode:2019PNAS..11623299G. doi: 10.1073/pnas.1908493116 . PMC   6859341 . PMID   31659049.
  18. Sache, Ivan; Vallavieille-Pope, Claude de (1995). "Classification of airborne plant pathogens based on sporulation and infection characteristics". Canadian Journal of Botany. 73 (8): 1186–1195. doi:10.1139/b95-128.
  19. Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; Fischer, Sean A.; Pfaendtner, Jim; Backus, Ellen H. G.; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F.; Knopf, Daniel A.; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias (2016). "Ice-nucleating bacteria control the order and dynamics of interfacial water". Science Advances. 2 (4): e1501630. Bibcode:2016SciA....2E1630P. doi:10.1126/sciadv.1501630. PMC   4846457 . PMID   27152346.
  20. Gusareva, Elena S.; Gaultier, Nicolas P. E.; Premkrishnan, Balakrishnan N. V.; Kee, Carmon; Lim, Serene Boon Yuean; Heinle, Cassie E.; Purbojati, Rikky W.; Nee, Ang Poh; Lohar, Sachin R.; Yanqing, Koh; Kharkov, Vladimir N.; Drautz-Moses, Daniela I.; Stepanov, Vadim A.; Schuster, Stephan C. (2020). "Taxonomic composition and seasonal dynamics of the air microbiome in West Siberia". Scientific Reports. 10 (1): 21515. Bibcode:2020NatSR..1021515G. doi:10.1038/s41598-020-78604-8. PMC   7726148 . PMID   33299064. S2CID   228089556. CC-BY icon.svg Modified text from this source, which is available under a Creative Commons Attribution 4.0 International License.
  21. Baldrian, Petr; Kolařík, Miroslav; Štursová, Martina; Kopecký, Jan; Valášková, Vendula; Větrovský, Tomáš; Žifčáková, Lucia; Šnajdr, Jaroslav; Rídl, Jakub; Vlček, Čestmír; Voříšková, Jana (2012). "Active and total microbial communities in forest soil are largely different and highly stratified during decomposition". The ISME Journal. 6 (2): 248–258. doi:10.1038/ismej.2011.95. PMC   3260513 . PMID   21776033.
  22. Gifford, Scott M.; Sharma, Shalabh; Rinta-Kanto, Johanna M.; Moran, Mary Ann (2011). "Quantitative analysis of a deeply sequenced marine microbial metatranscriptome". The ISME Journal. 5 (3): 461–472. doi:10.1038/ismej.2010.141. PMC   3105723 . PMID   20844569.
  23. Gilbert, Jack A.; Field, Dawn; Huang, Ying; Edwards, Rob; Li, Weizhong; Gilna, Paul; Joint, Ian (2008). "Detection of Large Numbers of Novel Sequences in the Metatranscriptomes of Complex Marine Microbial Communities". PLOS ONE. 3 (8): e3042. Bibcode:2008PLoSO...3.3042G. doi: 10.1371/journal.pone.0003042 . PMC   2518522 . PMID   18725995.
  24. Franzosa, E. A.; Morgan, X. C.; Segata, N.; Waldron, L.; Reyes, J.; Earl, A. M.; Giannoukos, G.; Boylan, M. R.; Ciulla, D.; Gevers, D.; Izard, J.; Garrett, W. S.; Chan, A. T.; Huttenhower, C. (2014). "Relating the metatranscriptome and metagenome of the human gut". Proceedings of the National Academy of Sciences. 111 (22): E2329–E2338. Bibcode:2014PNAS..111E2329F. doi: 10.1073/pnas.1319284111 . PMC   4050606 . PMID   24843156.
  25. Satinsky, Brandon M.; Zielinski, Brian L.; Doherty, Mary; Smith, Christa B.; Sharma, Shalabh; Paul, John H.; Crump, Byron C.; Moran, Mary (2014). "The Amazon continuum dataset: Quantitative metagenomic and metatranscriptomic inventories of the Amazon River plume, June 2010". Microbiome. 2: 17. doi: 10.1186/2049-2618-2-17 . PMC   4039049 . PMID   24883185.
  26. Chen, Lin-Xing; Hu, Min; Huang, Li-nan; Hua, Zheng-Shuang; Kuang, Jia-Liang; Li, Sheng-jin; Shu, Wen-Sheng (2015). "Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage". The ISME Journal. 9 (7): 1579–1592. doi:10.1038/ismej.2014.245. PMC   4478699 . PMID   25535937.
  27. 1 2 3 4 5 6 7 Amato, Pierre; Besaury, Ludovic; Joly, Muriel; Penaud, Benjamin; Deguillaume, Laurent; Delort, Anne-Marie (2019). "Metatranscriptomic exploration of microbial functioning in clouds". Scientific Reports. 9 (1): 4383. Bibcode:2019NatSR...9.4383A. doi:10.1038/s41598-019-41032-4. PMC   6416334 . PMID   30867542. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  28. See also: Pollen DNA barcoding
  29. Be, Nicholas A.; Thissen, James B.; Fofanov, Viacheslav Y.; Allen, Jonathan E.; Rojas, Mark; Golovko, George; Fofanov, Yuriy; Koshinsky, Heather; Jaing, Crystal J. (2015). "Metagenomic Analysis of the Airborne Environment in Urban Spaces". Microbial Ecology. 69 (2): 346–355. doi:10.1007/s00248-014-0517-z. PMC   4312561 . PMID   25351142.
  30. Whon, T. W.; Kim, M.-S.; Roh, S. W.; Shin, N.-R.; Lee, H.-W.; Bae, J.-W. (2012). "Metagenomic Characterization of Airborne Viral DNA Diversity in the Near-Surface Atmosphere". Journal of Virology. 86 (15): 8221–8231. doi:10.1128/JVI.00293-12. PMC   3421691 . PMID   22623790.
  31. Yooseph, Shibu; Andrews-Pfannkoch, Cynthia; Tenney, Aaron; McQuaid, Jeff; Williamson, Shannon; Thiagarajan, Mathangi; Brami, Daniel; Zeigler-Allen, Lisa; Hoffman, Jeff; Goll, Johannes B.; Fadrosh, Douglas; Glass, John; Adams, Mark D.; Friedman, Robert; Venter, J. Craig (2013). "A Metagenomic Framework for the Study of Airborne Microbial Communities". PLOS ONE. 8 (12): e81862. Bibcode:2013PLoSO...881862Y. doi: 10.1371/journal.pone.0081862 . PMC   3859506 . PMID   24349140.
  32. Xu, Caihong; Wei, Min; Chen, Jianmin; Sui, Xiao; Zhu, Chao; Li, Jiarong; Zheng, Lulu; Sui, Guodong; Li, Weijun; Wang, Wenxing; Zhang, Qingzhu; Mellouki, Abdelwahid (2017). "Investigation of diverse bacteria in cloud water at Mt. Tai, China" (PDF). Science of the Total Environment. 580: 258–265. Bibcode:2017ScTEn.580..258X. doi:10.1016/j.scitotenv.2016.12.081. PMID   28011017. S2CID   27205968.
  33. Klein, Ann M.; Bohannan, Brendan J. M.; Jaffe, Daniel A.; Levin, David A.; Green, Jessica L. (2016). "Molecular Evidence for Metabolically Active Bacteria in the Atmosphere". Frontiers in Microbiology. 7: 772. doi: 10.3389/fmicb.2016.00772 . PMC   4878314 . PMID   27252689.
  34. Womack, A. M.; Artaxo, P. E.; Ishida, F. Y.; Mueller, R. C.; Saleska, S. R.; Wiedemann, K. T.; Bohannan, B. J. M.; Green, J. L. (2015). "Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest". Biogeosciences. 12 (21): 6337–6349. Bibcode:2015BGeo...12.6337W. doi: 10.5194/bg-12-6337-2015 .
  35. 1 2 3 Amato, Pierre; Joly, Muriel; Besaury, Ludovic; Oudart, Anne; Taib, Najwa; Moné, Anne I.; Deguillaume, Laurent; Delort, Anne-Marie; Debroas, Didier (2017). "Active microorganisms thrive among extremely diverse communities in cloud water". PLOS ONE. 12 (8): e0182869. Bibcode:2017PLoSO..1282869A. doi: 10.1371/journal.pone.0182869 . PMC   5549752 . PMID   28792539.
  36. Krumins, Valdis; Mainelis, Gediminas; Kerkhof, Lee J.; Fennell, Donna E. (2014). "Substrate-Dependent rRNA Production in an Airborne Bacterium". Environmental Science & Technology Letters. 1 (9): 376–381. doi:10.1021/ez500245y.
  37. Fénart, Stéphane; Austerlitz, Frédéric; Cuguen, Joël; Arnaud, Jean-François (2007). "Long distance pollen-mediated gene flow at a landscape level: The weed beet as a case study". Molecular Ecology. 16 (18): 3801–3813. doi:10.1111/j.1365-294X.2007.03448.x. PMID   17850547. S2CID   6382777.
  38. Edlund, A. F.; Swanson, R.; Preuss, D. (2004). "Pollen and Stigma Structure and Function: The Role of Diversity in Pollination". The Plant Cell Online. 16 (Suppl): S84–S97. doi:10.1105/tpc.015800. PMC   2643401 . PMID   15075396.
  39. 1 2 3 Denisow, B. and Weryszko-Chmielewska, E. (2015) "Pollen grains as airborne allergenic particles". Acta Agrobotanica, 68(4). doi:10.5586/aa.2015.045. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  40. 1 2 World Allergy Organization (WAO) White Book on Allergy. 2011. ISBN   9780615461823.
  41. 1 2 Cecchi, Lorenzo (2013). "Introduction". Allergenic Pollen. pp. 1–7. doi:10.1007/978-94-007-4881-1_1. ISBN   978-94-007-4880-4.
  42. 1 2 Pringle, A. (2013) "Asthma and the diversity of fungal spores in air". PLoS Pathogens, 9(6): e1003371. doi:10.1371/journal.ppat.1003371. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  43. Figure adapted from: Ingold CT (1971) Fungal spores: their liberation and dispersal, Oxford: Clarendon Press.
  44. Pepper, Ian L.; Gerba, Charles P.; Gentry, Terry J.; Maier, Raina M. (13 October 2011). Environmental Microbiology. Academic Press. ISBN   9780080919409.
  45. Kurup, Viswanath P.; Shen, Horng-Der; Vijay, Hari (2002). "Immunobiology of Fungal Allergens". International Archives of Allergy and Immunology. 129 (3): 181–188. doi:10.1159/000066780. PMID   12444314. S2CID   6588557.
  46. Asan, Ahmet; Ilhan, Semra; Sen, Burhan; Erkara, Ismuhan Potoglu; Filik, Cansu; Cabuk, Ahmet; Demirel, Rasime; Ture, Mevlut; Okten, Suzan Sarica; Tokur, Suleyman (2004). "Airborne Fungi and Actinomycetes Concentrations in the Air of Eskisehir City (Turkey)". Indoor and Built Environment. 13: 63–74. doi:10.1177/1420326X04033843. S2CID   84241303.
  47. 1 2 3 Pusz, Wojciech; Kita, Włodzimierz; Dancewicz, Andrzej; Weber, Ryszard (2013). "Airborne fungal spores of subalpine zone of the Karkonosze and Izerskie Mountains (Poland)". Journal of Mountain Science. 10 (6): 940–952. doi:10.1007/s11629-013-2704-7. S2CID   129157372.
  48. 1 2 Jędryczka, Małgorzata (25 November 2014). "Aeromycology: studies of fungi in aeroplankton". Folia Biologica et Oecologica (in Polish). 10: 18–26. doi:10.2478/fobio-2014-0013. hdl: 11089/9908 . ISSN   1730-2366. S2CID   37133585 . Retrieved 5 August 2021.
  49. Raisi, Louisa; Aleksandropoulou, Victoria; Lazaridis, Mihalis; Katsivela, Eleftheria (2013). "Size distribution of viable, cultivable, airborne microbes and their relationship to particulate matter concentrations and meteorological conditions in a Mediterranean site". Aerobiologia. 29 (2): 233–248. doi:10.1007/s10453-012-9276-9. S2CID   84305807.
  50. 1 2 Pusz, Wojciech; Urbaniak, Jacek (2021). "Airborne fungi in Longyearbyen area (Svalbard, Norway) — case study". Environmental Monitoring and Assessment. 193 (5): 290. doi:10.1007/s10661-021-09090-2. PMC   8062393 . PMID   33890180. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  51. Nagarajan, S.; Saharan, M. S. (2007). "Epidemiology of Puccinia Triticina in Gangetic Plain and planned containment of crop losses". Wheat Production in Stressed Environments. Developments in Plant Breeding. Vol. 12. pp. 71–76. doi:10.1007/1-4020-5497-1_8. ISBN   978-1-4020-5496-9.
  52. Vaish, S.S.; Bilal Ahmed, Sheikh; Prakash, K. (2011). "First documentation on status of barley diseases from the high altitude cold arid Trans-Himalayan Ladakh region of India". Crop Protection. 30 (9): 1129–1137. doi:10.1016/j.cropro.2011.04.015.
  53. Pusz, Wojciech; Weber, Ryszard; Dancewicz, Andrzej; Kita, Włodzimierz (2017). "Analysis of selected fungi variation and its dependence on season and mountain range in southern Poland—key factors in drawing up trial guidelines for aeromycological monitoring". Environmental Monitoring and Assessment. 189 (10): 526. doi:10.1007/s10661-017-6243-5. PMC   5614908 . PMID   28952055. S2CID   29293277.
  54. Denning, D.W., O'driscoll, B.R., Hogaboam, C.M., Bowyer, P. and Niven, R.M. (2006) "The link between fungi and severe asthma: a summary of the evidence". European Respiratory Journal, 27(3): 615–626. doi : 10.1183/09031936.06.00074705.
  55. Packe, G.E. and Ayres, J. (1985) "Asthma outbreak during a thunderstorm". The Lancet, 326(8448): 199–204. doi : 10.1016/S0140-6736(85)91510-7.
  56. Burch, M. and Levetin, E., 2002. Effects of meteorological conditions on spore plumes. International journal of biometeorology, 46(3), pp.107–117. doi : 10.1007/s00484-002-0127-1.
  57. Bernstein, J.A., Alexis, N., Barnes, C., Bernstein, I.L., Nel, A., Peden, D., Diaz-Sanchez, D., Tarlo, S.M. and Williams, P.B., 2004. Health effects of air pollution. Journal of allergy and clinical immunology, 114(5), pp.1116-1123. doi : 10.1016/j.jaci.2004.08.030.
  58. Kellogg CA, Griffin DW (2006) "Aerobiology and the global transport of desert dust". Trends Ecol Evol, 21: 638–644. doi : 10.1016/j.tree.2006.07.004.
  59. Gyan, K., Henry, W., Lacaille, S., Laloo, A., Lamsee-Ebanks, C., McKay, S., Antoine, R.M. and Monteil, M.A. (2005) "African dust clouds are associated with increased paediatric asthma accident and emergency admissions on the Caribbean island of Trinidad". International Journal of Biometeorology, 49(6): 371–376. doi : 10.1007/s00484-005-0257-3.
  60. Burge, Harriet A.; Rogers, Christine A. (2000). "Outdoor Allergens". Environmental Health Perspectives. 108 (Suppl 4): 653–659. doi:10.2307/3454401. JSTOR   3454401. PMC   1637672 . PMID   10931783. S2CID   16407560.
  61. Weryszko-Chmielewska, E. (2007). "Zakres badań i znaczenie aerobiologii". Aerobiologia. Lublin: Wydawnictwo Akademii Rolniczej, pages 6-10 (in Polish).
  62. 1 2 3 4 5 6 7 8 Després, Vivianer.; Huffman, J.Alex; Burrows, Susannah M.; Hoose, Corinna; Safatov, Aleksandrs.; Buryak, Galina; Fröhlich-Nowoisky, Janine; Elbert, Wolfgang; Andreae, Meinrato.; Pöschl, Ulrich; Jaenicke, Ruprecht (2012). "Primary biological aerosol particles in the atmosphere: A review". Tellus B: Chemical and Physical Meteorology. 64: 15598. Bibcode:2012TellB..6415598D. doi: 10.3402/tellusb.v64i0.15598 . S2CID   98741728.
  63. Cho, M., Neubauer, P., Fahrenson, C. and Rechenberg, I. (2018) "An observational study of ballooning in large spiders: Nanoscale multifibers enable large spiders' soaring flight". PLoS biology, 16(6): e2004405. doi : 10.1371/journal.pbio.2004405.g007. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  64. Heinrichs, Ann (2004). Spiders . Compass Point Books. p. 21. ISBN   9780756505905. OCLC   54027960.
  65. Valerio, C.E. (1977). "Population structure in the spider Achaearranea Tepidariorum (Aranae, Theridiidae)". Journal of Arachnology. 3 (3): 185–190. JSTOR   3704941.
  66. Bond, Jason Edward (22 September 1999). Systematics and Evolution of the Californian Trapdoor Spider Genus Aptostichus Simon (Araneae: Mygalomorphae: Euctenizidae) (Thesis). CiteSeerX   10.1.1.691.8754 . hdl:10919/29114.
  67. 1 2 Weyman, G.S. (1995). "Laboratory studies of the factors stimulating ballooning behavior by Linyphiid spiders (Araneae, Linyphiidae)". Journal of Arachnology. 23 (2): 75–84. JSTOR   3705494.
  68. 1 2 Schneider, J.M.; Roos, J.; Lubin, Y.; Henschel, J.R. (October 2001). "Dispersal of Stegodyphus Dumicola (Araneae, Eresidae): They do balloon after all!". Journal of Arachnology. 29 (1): 114–116. doi:10.1636/0161-8202(2001)029[0114:DOSDAE]2.0.CO;2. S2CID   4707752.
  69. "Leap forward for 'flying' spiders". BBC News. 12 July 2006. Retrieved 23 July 2014.
  70. Morley, Erica L.; Robert, Daniel (July 2018). "Electric Fields Elicit Ballooning in Spiders". Current Biology. 28 (14): 2324–2330.e2. doi:10.1016/j.cub.2018.05.057. PMC   6065530 . PMID   29983315.
  71. Gorham, Peter (September 2013). "Ballooning spiders: The case for electrostatic flight". arXiv: 1309.4731 [physics.bio-ph].
  72. Ptatscheck, Christoph; Traunspurger, Walter (2020). "The ability to get everywhere: Dispersal modes of free-living, aquatic nematodes". Hydrobiologia. 847 (17): 3519–3547. doi: 10.1007/s10750-020-04373-0 . S2CID   221110776. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  73. 1 2 3 Nkem, Johnson N.; Wall, Diana H.; Virginia, Ross A.; Barrett, John E.; Broos, Emma J.; Porazinska, Dorota L.; Adams, Byron J. (2006). "Wind dispersal of soil invertebrates in the Mc Murdo Dry Valleys, Antarctica". Polar Biology. 29 (4): 346–352. doi:10.1007/s00300-005-0061-x. S2CID   32516212.
  74. 1 2 3 4 5 Maguire, Bassett (1963). "The Passive Dispersal of Small Aquatic Organisms and Their Colonization of Isolated Bodies of Water". Ecological Monographs. 33 (2): 161–185. doi:10.2307/1948560. JSTOR   1948560.
  75. 1 2 3 4 5 6 Vanschoenwinkel, Bram; Gielen, Saïdja; Seaman, Maitland; Brendonck, Luc (2008). "Any way the wind blows - frequent wind dispersal drives species sorting in ephemeral aquatic communities". Oikos. 117: 125–134. doi:10.1111/j.2007.0030-1299.16349.x.
  76. 1 2 3 4 5 6 Ptatscheck, Christoph; Gansfort, Birgit; Traunspurger, Walter (2018). "The extent of wind-mediated dispersal of small metazoans, focusing nematodes". Scientific Reports. 8 (1): 6814. Bibcode:2018NatSR...8.6814P. doi:10.1038/s41598-018-24747-8. PMC   5931521 . PMID   29717144. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  77. Hendriksen, N. B. (1982) "Anhydrobiosis in nematodes: studies on Plectus sp." In: New trends in soil biology (Eds: Lebrun, P. André, H. M., De Medts, A., Grégoire-Wibo, C. Wauthy, G.) pages 387–394, Louvain-la-Neurve, Belgium.
  78. Watanabe, M. (2006). "Anhydrobiosis in invertebrates". Applied Entomology and Zoology, 41(1): 15–31. doi : 10.1303/aez.2006.15.
  79. Andrássy, I. (2009) "Free-living nematodes of Hungary III (Nematoda errantia)". Pedozoologica Hungarica No. 5. Hungarian Natural History Museum and Systematic Zoology, Research Group of the Hungarian Academy of Sciences.
  80. 1 2 Cáceres, Carla E.; Soluk, Daniel A. (2002). "Blowing in the wind: A field test of overland dispersal and colonization by aquatic invertebrates". Oecologia. 131 (3): 402–408. Bibcode:2002Oecol.131..402C. doi:10.1007/s00442-002-0897-5. PMID   28547712. S2CID   9941895.
  81. Ptatscheck, Christoph; Dümmer, Birgit; Traunspurger, Walter (2015). "Nematode colonisation of artificial water-filled tree holes". Nematology. 17 (8): 911–921. doi:10.1163/15685411-00002913.
  82. Living Bacteria Are Riding Earth's Air Currents Smithsonian Magazine, 11 January 2016.
  83. Robbins, Jim (13 April 2018). "Trillions Upon Trillions of Viruses Fall From the Sky Each Day". The New York Times . Retrieved 14 April 2018.
  84. 1 2 Reche, Isabel; D'Orta, Gaetano; Mladenov, Natalie; Winget, Danielle M; Suttle, Curtis A (29 January 2018). "Deposition rates of viruses and bacteria above the atmospheric boundary layer". ISME Journal. 12 (4): 1154–1162. doi:10.1038/s41396-017-0042-4. PMC   5864199 . PMID   29379178.
  85. 1 2 3 4 5 Wiśniewska, Kinga A.; Śliwińska-Wilczewska, Sylwia; Lewandowska, Anita U. (2020). "The first characterization of airborne cyanobacteria and microalgae in the Adriatic Sea region". PLOS ONE. 15 (9): e0238808. Bibcode:2020PLoSO..1538808W. doi: 10.1371/journal.pone.0238808 . PMC   7482968 . PMID   32913356. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  86. Anderson, Donald M. (2009). "Approaches to monitoring, control and management of harmful algal blooms (HABs)". Ocean & Coastal Management. 52 (7): 342–347. Bibcode:2009OCM....52..342A. doi:10.1016/j.ocecoaman.2009.04.006. PMC   2818325 . PMID   20161650.
  87. Backer, Lorraine; Manassaram-Baptiste, Deana; Leprell, Rebecca; Bolton, Birgit (2015). "Cyanobacteria and Algae Blooms: Review of Health and Environmental Data from the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) 2007–2011". Toxins. 7 (4): 1048–1064. doi: 10.3390/toxins7041048 . PMC   4417954 . PMID   25826054.
  88. Huisman, Jef; Codd, Geoffrey A.; Paerl, Hans W.; Ibelings, Bas W.; Verspagen, Jolanda M. H.; Visser, Petra M. (2018). "Cyanobacterial blooms". Nature Reviews Microbiology. 16 (8): 471–483. doi:10.1038/s41579-018-0040-1. PMID   29946124. S2CID   49427202.
  89. Paerl, Hans (2018). "Mitigating Toxic Planktonic Cyanobacterial Blooms in Aquatic Ecosystems Facing Increasing Anthropogenic and Climatic Pressures". Toxins. 10 (2): 76. doi: 10.3390/toxins10020076 . PMC   5848177 . PMID   29419777.
  90. Vareli, Katerina; Zarali, Ekaterini; Zacharioudakis, Georgios S.A.; Vagenas, Georgios; Varelis, Vasileios; Pilidis, George; Briasoulis, Evangelos; Sainis, Ioannis (2012). "Microcystin producing cyanobacterial communities in Amvrakikos Gulf (Mediterranean Sea, NW Greece) and toxin accumulation in mussels (Mytilus galloprovincialis)". Harmful Algae. 15: 109–118. doi:10.1016/j.hal.2011.12.005.
  91. Aalismail, Nojood A.; Díaz-Rúa, Rubén; Ngugi, David K.; Cusack, Michael; Duarte, Carlos M. (12 November 2020). "Aeolian Prokaryotic Communities of the Global Dust Belt Over the Red Sea". Frontiers in Microbiology. 11. Frontiers Media SA: 538476. doi: 10.3389/fmicb.2020.538476 . ISSN   1664-302X. PMC   7688470 . PMID   33262740.
  92. 1 2 Joung, Young Soo; Ge, Zhifei; Buie, Cullen R. (2017). "Bioaerosol generation by raindrops on soil". Nature Communications. 8: 14668. Bibcode:2017NatCo...814668J. doi:10.1038/ncomms14668. PMC   5344306 . PMID   28267145.
  93. 1 2 Michaud, Jennifer M.; Thompson, Luke R.; Kaul, Drishti; Espinoza, Josh L.; Richter, R. Alexander; Xu, Zhenjiang Zech; Lee, Christopher; Pham, Kevin M.; Beall, Charlotte M.; Malfatti, Francesca; Azam, Farooq; Knight, Rob; Burkart, Michael D.; Dupont, Christopher L.; Prather, Kimberly A. (2018). "Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm". Nature Communications. 9 (1): 2017. Bibcode:2018NatCo...9.2017M. doi:10.1038/s41467-018-04409-z. PMC   5964107 . PMID   29789621. S2CID   43969729.
  94. 1 2 Carotenuto, Federico; Georgiadis, Teodoro; Gioli, Beniamino; Leyronas, Christel; Morris, Cindy E.; Nardino, Marianna; Wohlfahrt, Georg; Miglietta, Franco (2017). "Measurements and modeling of surface–atmosphere exchange of microorganisms in Mediterranean grassland". Atmospheric Chemistry and Physics. 17 (24): 14919–14936. Bibcode:2017ACP....1714919C. doi: 10.5194/acp-17-14919-2017 .
  95. Wainwright, M.; Wickramasinghe, N.C; Narlikar, J.V; Rajaratnam, P. (2003). "Microorganisms cultured from stratospheric air samples obtained at 41 km". FEMS Microbiology Letters. 218 (1): 161–165. doi: 10.1111/j.1574-6968.2003.tb11513.x . PMID   12583913.
  96. 1 2 3 Deleon-Rodriguez, N.; Lathem, T. L.; Rodriguez-r, L. M.; Barazesh, J. M.; Anderson, B. E.; Beyersdorf, A. J.; Ziemba, L. D.; Bergin, M.; Nenes, A.; Konstantinidis, K. T. (2013). "Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications". Proceedings of the National Academy of Sciences. 110 (7): 2575–2580. Bibcode:2013PNAS..110.2575D. doi: 10.1073/pnas.1212089110 . PMC   3574924 . PMID   23359712.
  97. 1 2 Smith, David J.; Ravichandar, Jayamary Divya; Jain, Sunit; Griffin, Dale W.; Yu, Hongbin; Tan, Qian; Thissen, James; Lusby, Terry; Nicoll, Patrick; Shedler, Sarah; Martinez, Paul; Osorio, Alejandro; Lechniak, Jason; Choi, Samuel; Sabino, Kayleen; Iverson, Kathryn; Chan, Luisa; Jaing, Crystal; McGrath, John (2018). "Airborne Bacteria in Earth's Lower Stratosphere Resemble Taxa Detected in the Troposphere: Results from a New NASA Aircraft Bioaerosol Collector (ABC)". Frontiers in Microbiology. 9: 1752. doi: 10.3389/fmicb.2018.01752 . PMC   6102410 . PMID   30154759.
  98. Smith, David J.; Jaffe, Daniel A.; Birmele, Michele N.; Griffin, Dale W.; Schuerger, Andrew C.; Hee, Jonathan; Roberts, Michael S. (2012). "Free Tropospheric Transport of Microorganisms from Asia to North America". Microbial Ecology. 64 (4): 973–985. doi:10.1007/s00248-012-0088-9. PMID   22760734. S2CID   17601337.
  99. 1 2 Smith, David J.; Timonen, Hilkka J.; Jaffe, Daniel A.; Griffin, Dale W.; Birmele, Michele N.; Perry, Kevin D.; Ward, Peter D.; Roberts, Michael S. (2013). "Intercontinental Dispersal of Bacteria and Archaea by Transpacific Winds". Applied and Environmental Microbiology. 79 (4): 1134–1139. Bibcode:2013ApEnM..79.1134S. doi:10.1128/AEM.03029-12. PMC   3568602 . PMID   23220959.
  100. 1 2 3 4 Griffin, D.W.; Gonzalez-Martin, C.; Hoose, C.; Smith, D.J. (2017). "Global-Scale Atmospheric Dispersion of Microorganisms". Microbiology of Aerosols. pp. 155–194. doi:10.1002/9781119132318.ch2c. ISBN   9781119132318.
  101. 1 2 Burrows, S. M.; Elbert, W.; Lawrence, M. G.; Pöschl, U. (2009). "Bacteria in the global atmosphere – Part 1: Review and synthesis of literature data for different ecosystems". Atmospheric Chemistry and Physics. 9 (23): 9263–9280. Bibcode:2009ACP.....9.9263B. doi: 10.5194/acp-9-9263-2009 .
  102. 1 2 3 Bowers, Robert M.; Clements, Nicholas; Emerson, Joanne B.; Wiedinmyer, Christine; Hannigan, Michael P.; Fierer, Noah (2013). "Seasonal Variability in Bacterial and Fungal Diversity of the Near-Surface Atmosphere". Environmental Science & Technology. 47 (21): 12097–12106. Bibcode:2013EnST...4712097B. doi:10.1021/es402970s. PMID   24083487.
  103. Deguillaume, L.; Charbouillot, T.; Joly, M.; Vaïtilingom, M.; Parazols, M.; Marinoni, A.; Amato, P.; Delort, A.-M.; Vinatier, V.; Flossmann, A.; Chaumerliac, N.; Pichon, J. M.; Houdier, S.; Laj, P.; Sellegri, K.; Colomb, A.; Brigante, M.; Mailhot, G. (2014). "Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties". Atmospheric Chemistry and Physics. 14 (3): 1485–1506. Bibcode:2014ACP....14.1485D. doi: 10.5194/acp-14-1485-2014 .
  104. 1 2 3 Dommergue, Aurelien; Amato, Pierre; Tignat-Perrier, Romie; Magand, Olivier; Thollot, Alban; Joly, Muriel; Bouvier, Laetitia; Sellegri, Karine; Vogel, Timothy; Sonke, Jeroen E.; Jaffrezo, Jean-Luc; Andrade, Marcos; Moreno, Isabel; Labuschagne, Casper; Martin, Lynwill; Zhang, Qianggong; Larose, Catherine (2019). "Methods to Investigate the Global Atmospheric Microbiome". Frontiers in Microbiology. 10: 243. doi: 10.3389/fmicb.2019.00243 . PMC   6394204 . PMID   30967843. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  105. 1 2 3 4 5 6 Wiśniewska, K.; Lewandowska, A.U.; Śliwińska-Wilczewska, S. (2019). "The importance of cyanobacteria and microalgae present in aerosols to human health and the environment – Review study". Environment International. 131: 104964. doi: 10.1016/j.envint.2019.104964 . PMID   31351382.
  106. 1 2 3 Moustaka-Gouni, Maria; Kormas, K. A.; Moustaka-Gouni, M. (2011). "Airborne Algae and Cyanobacteria Occurrence and Related Health Effects". Frontiers in Bioscience. 3 (2): 772–787. doi: 10.2741/e285 . PMID   21196350.
  107. Bernstein, I.Leonard; Safferman, Robert S. (1966). "Sensitivity of skin and bronchial mucosa to green algae". Journal of Allergy. 38 (3): 166–173. doi:10.1016/0021-8707(66)90039-6. PMID   5223702.
  108. Hoose, C.; Möhler, O. (2012). "Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments". Atmospheric Chemistry and Physics. 12 (20): 9817–9854. Bibcode:2012ACP....12.9817H. doi: 10.5194/acp-12-9817-2012 .
  109. Tesson, Sylvie V. M.; Šantl-Temkiv, Tina (2018). "Ice Nucleation Activity and Aeolian Dispersal Success in Airborne and Aquatic Microalgae". Frontiers in Microbiology. 9: 2681. doi: 10.3389/fmicb.2018.02681 . PMC   6240693 . PMID   30483227.
  110. Sharma, Naveen Kumar; Rai, Ashwani K. (2008). "Allergenicity of airborne cyanobacteria Phormidium fragile and Nostoc muscorum". Ecotoxicology and Environmental Safety. 69 (1): 158–162. doi:10.1016/j.ecoenv.2006.08.006. PMID   17011621.
  111. Lewandowska, Anita Urszula; Śliwińska-Wilczewska, Sylwia; Woźniczka, Dominika (2017). "Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea". Marine Pollution Bulletin. 125 (1–2): 30–38. Bibcode:2017MarPB.125...30L. doi:10.1016/j.marpolbul.2017.07.064. PMID   28823424.
  112. 1 2 Sahu, Nivedita; Tangutur, Anjana Devi (2015). "Airborne algae: Overview of the current status and its implications on the environment". Aerobiologia. 31: 89–97. doi:10.1007/s10453-014-9349-z. S2CID   83855537.
  113. Sharma, Naveen Kumar; Rai, Ashwani Kumar; Singh, Surendra; Brown, Richard Malcolm (2007). "Airborne Algae: Their Present Status and Relevance1". Journal of Phycology. 43 (4): 615–627. doi:10.1111/j.1529-8817.2007.00373.x. S2CID   85314169.
  114. Schlichting HE Jr. (1964) "Meteorological conditions affecting the dispersal of airborne algae and Protozoa". Lloydia, 27: 64–78.
  115. Tormo, R.; Recio, D.; Silva, I.; Muñoz, A.F. (2001). "A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in south-west Spain". European Journal of Phycology. 36 (4): 385–390. doi:10.1080/09670260110001735538. S2CID   85653057.
  116. Rosas, Irma; Roy-Ocotla, Guadalupe; Mosiño, Pedro (1989). "Meteorological effects on variation of airborne algae in Mexico". International Journal of Biometeorology. 33 (3): 173–179. Bibcode:1989IJBm...33..173R. doi:10.1007/BF01084602. S2CID   84781386.
  117. Sharma, Naveen Kumar; Singh, Surendra; Rai, Ashwani K. (2006). "Diversity and seasonal variation of viable algal particles in the atmosphere of a subtropical city in India". Environmental Research. 102 (3): 252–259. Bibcode:2006ER....102..252S. doi:10.1016/j.envres.2006.04.003. PMID   16780831.
  118. Matthias-Maser, S.; Jaenicke, R. (1995). "The size distribution of primary biological aerosol particles with radii > 0.2 μm in an urban/Rural influenced region". Atmospheric Research. 39 (4): 279–286. Bibcode:1995AtmRe..39..279M. doi:10.1016/0169-8095(95)00017-8.
  119. 1 2 Graham, Bim; Guyon, Pascal; Maenhaut, Willy; Taylor, Philip E.; Ebert, Martin; Matthias-Maser, Sabine; Mayol-Bracero, Olga L.; Godoi, Ricardo H. M.; Artaxo, Paulo; Meixner, Franz X.; Moura, Marcos A. Lima; Rocha, Carlos H. Eça D'Almeida; Grieken, Rene Van; Glovsky, M. Michael; Flagan, Richard C.; Andreae, Meinrat O. (2003). "Composition and diurnal variability of the natural Amazonian aerosol". Journal of Geophysical Research: Atmospheres. 108 (D24): n/a. Bibcode:2003JGRD..108.4765G. doi: 10.1029/2003JD004049 .
  120. Jaenicke, R. (2005). "Abundance of Cellular Material and Proteins in the Atmosphere". Science. 308 (5718): 73. doi:10.1126/science.1106335. PMID   15802596. S2CID   725976.
  121. Huffman, J. A.; Sinha, B.; Garland, R. M.; Snee-Pollmann, A.; Gunthe, S. S.; Artaxo, P.; Martin, S. T.; Andreae, M. O.; Pöschl, U. (2012). "Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08". Atmospheric Chemistry and Physics. 12 (24): 11997–12019. Bibcode:2012ACP....1211997H. doi: 10.5194/acp-12-11997-2012 .
  122. Morris, Cindy E.; Kinkel, Linda L.; Xiao, Kun; Prior, Philippe; Sands, David C. (2007). "Surprising niche for the plant pathogen Pseudomonas syringae". Infection, Genetics and Evolution. 7 (1): 84–92. doi:10.1016/j.meegid.2006.05.002. PMID   16807133.
  123. Galán Soldevilla C., Cariñanos González P., Alcázar Teno P., Domínguez Vilches E. (2007). "Management and Quality Manual". Spanish Aerobiology Network (REA), Cordoba: Servicio de Publicaciones.
  124. Monteil, Caroline L.; Bardin, Marc; Morris, Cindy E. (2014). "Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall". The ISME Journal. 8 (11): 2290–2304. doi:10.1038/ismej.2014.55. PMC   4992071 . PMID   24722630.
  125. 1 2 3 Mayol, Eva; Arrieta, Jesús M.; Jiménez, Maria A.; Martínez-Asensio, Adrián; Garcias-Bonet, Neus; Dachs, Jordi; González-Gaya, Belén; Royer, Sarah-J.; Benítez-Barrios, Verónica M.; Fraile-Nuez, Eugenio; Duarte, Carlos M. (2017). "Long-range transport of airborne microbes over the global tropical and subtropical ocean". Nature Communications. 8 (1): 201. Bibcode:2017NatCo...8..201M. doi:10.1038/s41467-017-00110-9. PMC   5544686 . PMID   28779070.
  126. Sesartic, A.; Lohmann, U.; Storelvmo, T. (2012). "Bacteria in the ECHAM5-HAM global climate model". Atmospheric Chemistry and Physics. 12 (18): 8645–8661. Bibcode:2012ACP....12.8645S. doi: 10.5194/acp-12-8645-2012 . hdl: 20.500.11850/44091 .
  127. Pouzet, Glwadys; Peghaire, Elodie; Aguès, Maxime; Baray, Jean-Luc; Conen, Franz; Amato, Pierre (2017). "Atmospheric Processing and Variability of Biological Ice Nucleating Particles in Precipitation at Opme, France". Atmosphere. 8 (12): 229. Bibcode:2017Atmos...8..229P. doi: 10.3390/atmos8110229 .
  128. Morris, Cindy E.; Conen, Franz; Alex Huffman, J.; Phillips, Vaughan; Pöschl, Ulrich; Sands, David C. (2014). "Bioprecipitation: A feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere" (PDF). Global Change Biology. 20 (2): 341–351. Bibcode:2014GCBio..20..341M. doi:10.1111/gcb.12447. PMID   24399753. S2CID   10572570.
  129. 1 2 3 4 5 6 7 8 Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich (2016). "Bioaerosols in the Earth system: Climate, health, and ecosystem interactions". Atmospheric Research. 182: 346–376. Bibcode:2016AtmRe.182..346F. doi: 10.1016/j.atmosres.2016.07.018 . CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  130. 1 2 Vaitilingom, M.; Deguillaume, L.; Vinatier, V.; Sancelme, M.; Amato, P.; Chaumerliac, N.; Delort, A.-M. (2013). "Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds". Proceedings of the National Academy of Sciences. 110 (2): 559–564. Bibcode:2013PNAS..110..559V. doi: 10.1073/pnas.1205743110 . PMC   3545818 . PMID   23263871.
  131. Hughes, Kevin A.; Convey, Pete (2010). "The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: A review of current systems and practices". Global Environmental Change. 20: 96–112. doi:10.1016/j.gloenvcha.2009.09.005.
  132. Bar-On, Yinon M.; Phillips, Rob; Milo, Ron (2018). "The biomass distribution on Earth". Proceedings of the National Academy of Sciences. 115 (25): 6506–6511. Bibcode:2018PNAS..115.6506B. doi: 10.1073/pnas.1711842115 . PMC   6016768 . PMID   29784790.
  133. Leyronas, Christel; Morris, Cindy E.; Choufany, Maria; Soubeyrand, Samuel (2018). "Assessing the Aerial Interconnectivity of Distant Reservoirs of Sclerotinia sclerotiorum". Frontiers in Microbiology. 9: 2257. doi: 10.3389/fmicb.2018.02257 . PMC   6178138 . PMID   30337908.
  134. 1 2 Burrows, S. M.; Butler, T.; Jöckel, P.; Tost, H.; Kerkweg, A.; Pöschl, U.; Lawrence, M. G. (2009). "Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems". Atmospheric Chemistry and Physics. 9 (23): 9281–9297. Bibcode:2009ACP.....9.9281B. doi: 10.5194/acp-9-9281-2009 .
  135. Šantl-Temkiv, Tina; Gosewinkel, Ulrich; Starnawski, Piotr; Lever, Mark; Finster, Kai (2018). "Aeolian dispersal of bacteria in southwest Greenland: Their sources, abundance, diversity and physiological states". FEMS Microbiology Ecology. 94 (4). doi: 10.1093/femsec/fiy031 . hdl: 20.500.11850/266148 . PMID   29481623.
  136. Brown, R. M.; Larson, D. A.; Bold, H. C. (1964). "Airborne Algae: Their Abundance and Heterogeneity". Science. 143 (3606): 583–585. Bibcode:1964Sci...143..583B. doi:10.1126/science.143.3606.583. PMID   17815653. S2CID   44328547.
  137. Tesson, Sylvie V. M.; Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob (2016). "Airborne Microalgae: Insights, Opportunities, and Challenges". Applied and Environmental Microbiology. 82 (7): 1978–1991. Bibcode:2016ApEnM..82.1978T. doi:10.1128/AEM.03333-15. PMC   4807511 . PMID   26801574. S2CID   4790872.
  138. Rogerson, Andrew; Detwiler, Andrew (1999). "Abundance of airborne heterotrophic protists in ground level air of South Dakota". Atmospheric Research. 51 (1): 35–44. Bibcode:1999AtmRe..51...35R. doi:10.1016/S0169-8095(98)00109-4.
  139. Madelin, T.M. (1994). "Fungal aerosols: A review". Journal of Aerosol Science. 25 (8): 1405–1412. Bibcode:1994JAerS..25.1405M. doi:10.1016/0021-8502(94)90216-X.
  140. Ariya, Parisa A.; Amyot, Marc (2004). "New Directions: The role of bioaerosols in atmospheric chemistry and physics". Atmospheric Environment. 38 (8): 1231–1232. Bibcode:2004AtmEn..38.1231A. doi:10.1016/j.atmosenv.2003.12.006.
  141. Cox, Christopher S.; Wathes, Christopher M. (25 November 2020). Bioaerosols Handbook. CRC Press. ISBN   9781000115048.
  142. Matthias-Maser, Sabine; Peters, Kristina; Jaenicke, Ruprecht (1995). "Seasonal variation of primary biological aerosol particles". Journal of Aerosol Science. 26: S545–S546. Bibcode:1995JAerS..26S.545M. doi:10.1016/0021-8502(95)97180-M.
  143. 1 2 Womack, Ann M.; Bohannan, Brendan J. M.; Green, Jessica L. (2010). "Biodiversity and biogeography of the atmosphere". Philosophical Transactions of the Royal Society B: Biological Sciences. 365 (1558): 3645–3653. doi:10.1098/rstb.2010.0283. PMC   2982008 . PMID   20980313.
  144. Hinds, William C. (6 December 2012). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. John Wiley & Sons. ISBN   9781118591970.
  145. 1 2 Pöschl, Ulrich (2005). "Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects". Angewandte Chemie International Edition. 44 (46): 7520–7540. doi:10.1002/anie.200501122. PMID   16302183.
  146. 1 2 Urbano, R.; Palenik, B.; Gaston, C. J.; Prather, K. A. (2011). "Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques". Biogeosciences. 8 (2): 301–309. Bibcode:2011BGeo....8..301U. doi: 10.5194/bg-8-301-2011 .
  147. Ehrenberg C.G. (1830) "Neue Beobachtungen über blutartige Erscheinungen in Aegypten, Arabien und Sibirien, nebst einer Übersicht und Kritik der früher bekannten". Ann. Phys. Chem., 94: 477–514.
  148. Pasteur L. (1860) "Expériences relatives aux generations dites spontanées". C. R. Hebd. Seances Acad. Sci., 50: 303–307
  149. Pasteur L. (1860) "Suite à une précédente communication relative aux generations dites spontanées". C. R. Hebd. Seances Acad. Sci., 51: 675–678.
  150. 1 2 Brown, J. K. M.; Hovmøller, M. S. (2002). "Aerial Dispersal of Pathogens on the Global and Continental Scales and Its Impact on Plant Disease". Science. 297 (5581): 537–541. Bibcode:2002Sci...297..537B. doi:10.1126/science.1072678. PMID   12142520. S2CID   4207803.
  151. Elbert, W.; Taylor, P. E.; Andreae, M. O.; Pöschl, U. (2007). "Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores, carbohydrates, and inorganic ions". Atmospheric Chemistry and Physics. 7 (17): 4569–4588. Bibcode:2007ACP.....7.4569E. doi: 10.5194/acp-7-4569-2007 . S2CID   17512396.
  152. Gregory, P.H. (1945). "The dispersion of air-borne spores". Transactions of the British Mycological Society. 28 (1–2): 26–72. doi:10.1016/S0007-1536(45)80041-4.
  153. Griffin, Dale W.; Garrison, Virginia H.; Herman, Jay R.; Shinn, Eugene A. (2001). "African desert dust in the Caribbean atmosphere: Microbiology and public health". Aerobiologia. 17 (3): 203–213. doi:10.1023/A:1011868218901. hdl: 11603/28524 . S2CID   82040406.
  154. Hallar, A. Gannet; Chirokova, Galina; McCubbin, Ian; Painter, Thomas H.; Wiedinmyer, Christine; Dodson, Craig (2011). "Atmospheric bioaerosols transported via dust storms in the western United States". Geophysical Research Letters. 38 (17): n/a. Bibcode:2011GeoRL..3817801H. doi:10.1029/2011GL048166. S2CID   54218062.
  155. Hirst, J. M.; Stedman, O. J.; Hurst, G. W. (1967). "Long-distance Spore Transport: Vertical Sections of Spore Clouds over the Sea". Journal of General Microbiology. 48 (3): 357–377. doi: 10.1099/00221287-48-3-357 . PMID   6052629.
  156. Maki, Teruya; Kakikawa, Makiko; Kobayashi, Fumihisa; Yamada, Maromu; Matsuki, Atsushi; Hasegawa, Hiroshi; Iwasaka, Yasunobu (2013). "Assessment of composition and origin of airborne bacteria in the free troposphere over Japan". Atmospheric Environment. 74: 73–82. Bibcode:2013AtmEn..74...73M. doi:10.1016/j.atmosenv.2013.03.029. hdl: 2297/34677 .
  157. Polymenakou, Paraskevi N.; Mandalakis, Manolis; Stephanou, Euripides G.; Tselepides, Anastasios (2008). "Particle Size Distribution of Airborne Microorganisms and Pathogens during an Intense African Dust Event in the Eastern Mediterranean". Environmental Health Perspectives. 116 (3): 292–296. doi:10.1289/ehp.10684. PMC   2265054 . PMID   18335093.
  158. Shivaji, S.; Chaturvedi, P.; Suresh, K.; Reddy, G. S. N.; Dutt, C. B. S.; Wainwright, M.; Narlikar, J. V.; Bhargava, P. M. (2006). "Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. And Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes". International Journal of Systematic and Evolutionary Microbiology. 56 (7): 1465–1473. doi: 10.1099/ijs.0.64029-0 . PMID   16825614.
  159. Pöschl, Ulrich; Shiraiwa, Manabu (2015). "Multiphase Chemistry at the Atmosphere–Biosphere Interface Influencing Climate and Public Health in the Anthropocene". Chemical Reviews. 115 (10): 4440–4475. doi:10.1021/cr500487s. PMID   25856774. S2CID   206901179.
  160. Bonte, Dries; Dahirel, Maxime (2017). "Dispersal: A central and independent trait in life history". Oikos. 126 (4): 472–479. doi: 10.1111/oik.03801 .
  161. 1 2 Rundle, Simon D.; Robertson, Anne L.; Schmid-Araya, Jenny M. (2002). Freshwater Meiofauna: Biology and Ecology. Backhuys. ISBN   9789057821097.
  162. Kneitel, Jamie M.; Miller, Thomas E. (2003). "Dispersal Rates Affect Species Composition in Metacommunities of Sarracenia purpurea Inquilines". The American Naturalist. 162 (2): 165–171. doi:10.1086/376585. PMID   12858261. S2CID   17576931.
  163. Cottenie, Karl (2005). "Integrating environmental and spatial processes in ecological community dynamics". Ecology Letters. 8 (11): 1175–1182. doi:10.1111/j.1461-0248.2005.00820.x. PMID   21352441.
  164. 1 2 3 4 5 6 7 Incagnone, Giulia; Marrone, Federico; Barone, Rossella; Robba, Lavinia; Naselli-Flores, Luigi (2015). "How do freshwater organisms cross the "dry ocean"? A review on passive dispersal and colonization processes with a special focus on temporary ponds". Hydrobiologia. 750: 103–123. doi:10.1007/s10750-014-2110-3. hdl: 10447/101976 . S2CID   13892871.
  165. Finlay, B. J. (2002). "Global Dispersal of Free-Living Microbial Eukaryote Species". Science. 296 (5570): 1061–1063. Bibcode:2002Sci...296.1061F. doi:10.1126/science.1070710. PMID   12004115. S2CID   19508548.
  166. T.Y. Chuang and W.H. Ko. 1981. Propagule size: Its relation to population density of microorganisms in soil. Soil Biology and Biochemistry. 13(3).
  167. Panov, Vadim E.; Krylov, Piotr I.; Riccardi, Nicoletta (2004). "Role of diapause in dispersal and invasion success by aquatic invertebrates". Journal of Limnology. 63: 56. doi: 10.4081/jlimnol.2004.s1.56 .
  168. Ptatscheck, Chistoph; Traunspurger, Walter (2014). "The meiofauna of artificial water-filled tree holes: Colonization and bottom-up effects". Aquatic Ecology. 48 (3): 285–295. doi:10.1007/s10452-014-9483-2. S2CID   15256569.
  169. Jenkins, David G. (1995). "Dispersal-limited zooplankton distribution and community composition in new ponds". Hydrobiologia. 313–314: 15–20. doi:10.1007/BF00025926. S2CID   45667054.
  170. Parekh, Priya A.; Paetkau, Mark J.; Gosselin, Louis A. (2014). "Historical frequency of wind dispersal events and role of topography in the dispersal of anostracan cysts in a semi-arid environment". Hydrobiologia. 740: 51–59. doi:10.1007/s10750-014-1936-z. S2CID   18458173.
  171. 1 2 Carroll, J.J. and Viglierchio, D.R. (1981). "On the transport of nematodes by the wind". Journal of Nematology, 13(4): 476.
  172. Van Gundy, Seymour D. (1965). "Factors in Survival of Nematodes". Annual Review of Phytopathology. 3: 43–68. doi:10.1146/annurev.py.03.090165.000355.
  173. Ricci, C.; Caprioli, M. (2005). "Anhydrobiosis in Bdelloid Species, Populations and Individuals". Integrative and Comparative Biology. 45 (5): 759–763. doi: 10.1093/icb/45.5.759 . PMID   21676827. S2CID   42270008.
  174. 1 2 Vanschoenwinkel, Bram; Gielen, Saïdja; Vandewaerde, Hanne; Seaman, Maitland; Brendonck, Luc (2008). "Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity". Ecography. 31 (5): 567–577. doi:10.1111/j.0906-7590.2008.05442.x.
  175. "X. The distribution of micro-organisms in air". Proceedings of the Royal Society of London. 40 (242–245): 509–526. 1886. doi:10.1098/rspl.1886.0077. S2CID   129825037.
  176. 1 2 3 Tignat-Perrier, Romie; Dommergue, Aurélien; Vogel, Timothy M.; Larose, Catherine (2020). "Microbial Ecology of the Planetary Boundary Layer". Atmosphere. 11 (12): 1296. Bibcode:2020Atmos..11.1296T. doi: 10.3390/atmos11121296 . CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  177. Els, Nora; Larose, Catherine; Baumann-Stanzer, Kathrin; Tignat-Perrier, Romie; Keuschnig, Christoph; Vogel, Timothy M.; Sattler, Birgit (2019). "Microbial composition in seasonal time series of free tropospheric air and precipitation reveals community separation". Aerobiologia. 35 (4): 671–701. doi: 10.1007/s10453-019-09606-x . S2CID   201834075.
  178. 1 2 3 4 Innocente, Elena; Squizzato, Stefania; Visin, Flavia; Facca, Chiara; Rampazzo, Giancarlo; Bertolini, Valentina; Gandolfi, Isabella; Franzetti, Andrea; Ambrosini, Roberto; Bestetti, Giuseppina (2017). "Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy". Science of the Total Environment. 593–594: 677–687. Bibcode:2017ScTEn.593..677I. doi:10.1016/j.scitotenv.2017.03.199. hdl: 10278/3691685 . PMID   28363180.
  179. 1 2 3 4 5 6 Tignat-Perrier, Romie; Dommergue, Aurélien; Thollot, Alban; Magand, Olivier; Vogel, Timothy M.; Larose, Catherine (2020). "Microbial functional signature in the atmospheric boundary layer". Biogeosciences. 17 (23): 6081–6095. Bibcode:2020BGeo...17.6081T. doi: 10.5194/bg-17-6081-2020 . S2CID   234687848. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  180. Smith, David J.; Griffin, Dale W.; Jaffe, Daniel A. (2011). "The high life: Transport of microbes in the atmosphere". Eos, Transactions American Geophysical Union. 92 (30): 249–250. Bibcode:2011EOSTr..92..249S. doi: 10.1029/2011EO300001 .
  181. Maki, Teruya; Kakikawa, Makiko; Kobayashi, Fumihisa; Yamada, Maromu; Matsuki, Atsushi; Hasegawa, Hiroshi; Iwasaka, Yasunobu (2013). "Assessment of composition and origin of airborne bacteria in the free troposphere over Japan". Atmospheric Environment. 74: 73–82. Bibcode:2013AtmEn..74...73M. doi:10.1016/j.atmosenv.2013.03.029. hdl: 2297/34677 .
  182. Els, Nora; Baumann-Stanzer, Kathrin; Larose, Catherine; Vogel, Timothy M.; Sattler, Birgit (2019). "Beyond the planetary boundary layer: Bacterial and fungal vertical biogeography at Mount Sonnblick, Austria". Geo: Geography and Environment. 6. doi: 10.1002/geo2.69 . S2CID   134665478.
  183. Genitsaris, Savvas; Stefanidou, Natassa; Katsiapi, Matina; Kormas, Konstantinos A.; Sommer, Ulrich; Moustaka-Gouni, Maria (2017). "Variability of airborne bacteria in an urban Mediterranean area (Thessaloniki, Greece)". Atmospheric Environment. 157: 101–110. Bibcode:2017AtmEn.157..101G. doi:10.1016/j.atmosenv.2017.03.018.
  184. 1 2 Gandolfi, I.; Bertolini, V.; Bestetti, G.; Ambrosini, R.; Innocente, E.; Rampazzo, G.; Papacchini, M.; Franzetti, A. (2015). "Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas". Applied Microbiology and Biotechnology. 99 (11): 4867–4877. doi:10.1007/s00253-014-6348-5. hdl: 10281/90570 . PMID   25592734. S2CID   16731037.
  185. Cho, Byung Cheol; Hwang, Chung Yeon (2011). "Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea)". FEMS Microbiology Ecology. 76 (2): 327–341. doi: 10.1111/j.1574-6941.2011.01053.x . PMID   21255051.
  186. Park, Jonguk; Li, Pin-Fang; Ichijo, Tomoaki; Nasu, Masao; Yamaguchi, Nobuyasu (2018). "Effects of Asian dust events on atmospheric bacterial communities at different distances downwind of the source region". Journal of Environmental Sciences. 72: 133–139. doi:10.1016/j.jes.2017.12.019. PMID   30244740. S2CID   52334609.
  187. Tanaka, Daisuke; Sato, Kei; Goto, Motoshi; Fujiyoshi, So; Maruyama, Fumito; Takato, Shunsuke; Shimada, Takamune; Sakatoku, Akihiro; Aoki, Kazuma; Nakamura, Shogo (2019). "Airborne Microbial Communities at High-Altitude and Suburban Sites in Toyama, Japan Suggest a New Perspective for Bioprospecting". Frontiers in Bioengineering and Biotechnology. 7: 12. doi: 10.3389/fbioe.2019.00012 . PMC   6370616 . PMID   30805335.
  188. Zweifel, Ulla Li; Hagström, Åke; Holmfeldt, Karin; Thyrhaug, Runar; Geels, Camilla; Frohn, Lise Marie; Skjøth, Carsten A.; Karlson, Ulrich Gosewinkel (2012). "High bacterial 16S rRNA gene diversity above the atmospheric boundary layer". Aerobiologia. 28 (4): 481–498. doi:10.1007/s10453-012-9250-6. S2CID   84270694.
  189. 1 2 Uetake, Jun; Tobo, Yutaka; Uji, Yasushi; Hill, Thomas C. J.; Demott, Paul J.; Kreidenweis, Sonia M.; Misumi, Ryohei (2019). "Seasonal changes of airborne bacterial communities over Tokyo and influence of local meteorology". Frontiers in Microbiology. 10: 1572. bioRxiv   10.1101/542001 . doi: 10.3389/fmicb.2019.01572 . PMC   6646838 . PMID   31379765. S2CID   92236469.
  190. 1 2 3 4 Bowers, Robert M.; McLetchie, Shawna; Knight, Rob; Fierer, Noah (2011). "Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments". The ISME Journal. 5 (4): 601–612. doi:10.1038/ismej.2010.167. PMC   3105744 . PMID   21048802.
  191. 1 2 Bowers, Robert M.; McCubbin, Ian B.; Hallar, Anna G.; Fierer, Noah (2012). "Seasonal variability in airborne bacterial communities at a high-elevation site". Atmospheric Environment. 50: 41–49. Bibcode:2012AtmEn..50...41B. doi:10.1016/j.atmosenv.2012.01.005.
  192. 1 2 Mhuireach, Gwynne Á.; Betancourt-Román, Clarisse M.; Green, Jessica L.; Johnson, Bart R. (2019). "Spatiotemporal Controls on the Urban Aerobiome". Frontiers in Ecology and Evolution. 7. doi: 10.3389/fevo.2019.00043 .
  193. 1 2 3 4 Cáliz, Joan; Triadó-Margarit, Xavier; Camarero, Lluís; Casamayor, Emilio O. (2018). "A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations". Proceedings of the National Academy of Sciences. 115 (48): 12229–12234. Bibcode:2018PNAS..11512229C. doi: 10.1073/pnas.1812826115 . PMC   6275539 . PMID   30420511.
  194. Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U. (2012). "Biogeography in the air: Fungal diversity over land and oceans". Biogeosciences. 9 (3): 1125–1136. Bibcode:2012BGeo....9.1125F. doi: 10.5194/bg-9-1125-2012 .
  195. Ariya, P. A.; Sun, J.; Eltouny, N. A.; Hudson, E. D.; Hayes, C. T.; Kos, G. (2009). "Physical and chemical characterization of bioaerosols – Implications for nucleation processes". International Reviews in Physical Chemistry. 28 (1): 1–32. Bibcode:2009IRPC...28....1A. doi:10.1080/01442350802597438. S2CID   95932745.
  196. Aylor, Donald E. (2003). "Spread of Plant Disease on a Continental Scale: Role of Aerial Dispersal of Pathogens". Ecology. 84 (8): 1989–1997. doi:10.1890/01-0619.
  197. Delort, Anne-Marie; Vaïtilingom, Mickael; Amato, Pierre; Sancelme, Martine; Parazols, Marius; Mailhot, Gilles; Laj, Paolo; Deguillaume, Laurent (2010). "A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes". Atmospheric Research. 98 (2–4): 249–260. Bibcode:2010AtmRe..98..249D. doi:10.1016/j.atmosres.2010.07.004.
  198. Griffin, Dale W. (2007). "Atmospheric Movement of Microorganisms in Clouds of Desert Dust and Implications for Human Health". Clinical Microbiology Reviews. 20 (3): 459–477. doi:10.1128/CMR.00039-06. PMC   1932751 . PMID   17630335.
  199. 1 2 3 4 Amato, P.; Demeer, F.; Melaouhi, A.; Fontanella, S.; Martin-Biesse, A.-S.; Sancelme, M.; Laj, P.; Delort, A.-M. (2007). "A fate for organic acids, formaldehyde and methanol in cloud water: Their biotransformation by micro-organisms". Atmospheric Chemistry and Physics. 7 (15): 4159–4169. Bibcode:2007ACP.....7.4159A. doi: 10.5194/acp-7-4159-2007 .
  200. Ariya, Parisa A.; Nepotchatykh, Oleg; Ignatova, Olga; Amyot, Marc (2002). "Microbiological degradation of atmospheric organic compounds". Geophysical Research Letters. 29 (22): 2077. Bibcode:2002GeoRL..29.2077A. doi: 10.1029/2002GL015637 . S2CID   129578943.
  201. Hill, Kimberly A.; Shepson, Paul B.; Galbavy, Edward S.; Anastasio, Cort; Kourtev, Peter S.; Konopka, Allan; Stirm, Brian H. (2007). "Processing of atmospheric nitrogen by clouds above a forest environment". Journal of Geophysical Research. 112 (D11). Bibcode:2007JGRD..11211301H. doi:10.1029/2006JD008002.
  202. VaïTilingom, Mickaël; Amato, Pierre; Sancelme, Martine; Laj, Paolo; Leriche, Maud; Delort, Anne-Marie (2010). "Contribution of Microbial Activity to Carbon Chemistry in Clouds". Applied and Environmental Microbiology. 76 (1): 23–29. Bibcode:2010ApEnM..76...23V. doi:10.1128/AEM.01127-09. PMC   2798665 . PMID   19854931.
  203. 1 2 Vaitilingom, M.; Deguillaume, L.; Vinatier, V.; Sancelme, M.; Amato, P.; Chaumerliac, N.; Delort, A.-M. (2013). "Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds". Proceedings of the National Academy of Sciences. 110 (2): 559–564. Bibcode:2013PNAS..110..559V. doi: 10.1073/pnas.1205743110 . PMC   3545818 . PMID   23263871.
  204. Vartoukian, Sonia R.; Palmer, Richard M.; Wade, William G. (2010). "Strategies for culture of 'unculturable' bacteria". FEMS Microbiology Letters. 309 (1): 1–7. doi: 10.1111/j.1574-6968.2010.02000.x . PMID   20487025.
  205. Aalismail, Nojood A.; Ngugi, David K.; Díaz-Rúa, Rubén; Alam, Intikhab; Cusack, Michael; Duarte, Carlos M. (2019). "Functional metagenomic analysis of dust-associated microbiomes above the Red Sea". Scientific Reports. 9 (1): 13741. Bibcode:2019NatSR...913741A. doi:10.1038/s41598-019-50194-0. PMC   6760216 . PMID   31551441.
  206. Amato, Pierre; Besaury, Ludovic; Joly, Muriel; Penaud, Benjamin; Deguillaume, Laurent; Delort, Anne-Marie (2019). "Metatranscriptomic exploration of microbial functioning in clouds". Scientific Reports. 9 (1): 4383. Bibcode:2019NatSR...9.4383A. doi:10.1038/s41598-019-41032-4. PMC   6416334 . PMID   30867542.
  207. Cao, Chen; Jiang, Wenjun; Wang, Buying; Fang, Jianhuo; Lang, Jidong; Tian, Geng; Jiang, Jingkun; Zhu, Ting F. (2014). "Inhalable Microorganisms in Beijing's PM2.5 and PM10 Pollutants during a Severe Smog Event". Environmental Science & Technology. 48 (3): 1499–1507. Bibcode:2014EnST...48.1499C. doi:10.1021/es4048472. PMC   3963435 . PMID   24456276.
  208. 1 2 Yooseph, Shibu; Andrews-Pfannkoch, Cynthia; Tenney, Aaron; McQuaid, Jeff; Williamson, Shannon; Thiagarajan, Mathangi; Brami, Daniel; Zeigler-Allen, Lisa; Hoffman, Jeff; Goll, Johannes B.; Fadrosh, Douglas; Glass, John; Adams, Mark D.; Friedman, Robert; Venter, J. Craig (2013). "A Metagenomic Framework for the Study of Airborne Microbial Communities". PLOS ONE. 8 (12): e81862. Bibcode:2013PLoSO...881862Y. doi: 10.1371/journal.pone.0081862 . PMC   3859506 . PMID   24349140.
  209. Delmont, Tom O.; Malandain, Cedric; Prestat, Emmanuel; Larose, Catherine; Monier, Jean-Michel; Simonet, Pascal; Vogel, Timothy M. (2011). "Metagenomic mining for microbiologists". The ISME Journal. 5 (12): 1837–1843. doi:10.1038/ismej.2011.61. PMC   3223302 . PMID   21593798.
  210. Li, Yingdong; Zheng, Liping; Zhang, Yue; Liu, Hongbin; Jing, Hongmei (2019). "Comparative metagenomics study reveals pollution induced changes of microbial genes in mangrove sediments". Scientific Reports. 9 (1): 5739. Bibcode:2019NatSR...9.5739L. doi:10.1038/s41598-019-42260-4. PMC   6450915 . PMID   30952929.
  211. Tringe, Susannah Green; von Mering, Christian; Kobayashi, Arthur; Salamov, Asaf A.; Chen, Kevin; Chang, Hwai W.; Podar, Mircea; Short, Jay M.; Mathur, Eric J.; Detter, John C.; Bork, Peer; Hugenholtz, Philip; Rubin, Edward M. (2005). "Comparative Metagenomics of Microbial Communities". Science. 308 (5721): 554–557. Bibcode:2005Sci...308..554T. doi:10.1126/science.1107851. PMID   15845853. S2CID   161283.
  212. Xie, Wei; Wang, Fengping; Guo, Lei; Chen, Zeling; Sievert, Stefan M.; Meng, Jun; Huang, Guangrui; Li, Yuxin; Yan, Qingyu; Wu, Shan; Wang, Xin; Chen, Shangwu; He, Guangyuan; Xiao, Xiang; Xu, Anlong (2011). "Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries". The ISME Journal. 5 (3): 414–426. doi:10.1038/ismej.2010.144. PMC   3105715 . PMID   20927138.
  213. Brune, Andreas; Frenzel, Peter; Cypionka, Heribert (2000). "Life at the oxic–anoxic interface: Microbial activities and adaptations". FEMS Microbiology Reviews. 24 (5): 691–710. doi:10.1111/j.1574-6976.2000.tb00567.x. PMID   11077159. S2CID   8638694.
  214. Hindré, Thomas; Knibbe, Carole; Beslon, Guillaume; Schneider, Dominique (2012). "New insights into bacterial adaptation through in vivo and in silico experimental evolution". Nature Reviews Microbiology. 10 (5): 352–365. doi:10.1038/nrmicro2750. PMID   22450379. S2CID   22286095.
  215. Rey, Olivier; Danchin, Etienne; Mirouze, Marie; Loot, Céline; Blanchet, Simon (2016). "Adaptation to Global Change: A Transposable Element–Epigenetics Perspective". Trends in Ecology & Evolution. 31 (7): 514–526. doi:10.1016/j.tree.2016.03.013. PMID   27080578.
  216. Joly, Muriel; Amato, Pierre; Sancelme, Martine; Vinatier, Virginie; Abrantes, Magali; Deguillaume, Laurent; Delort, Anne-Marie (2015). "Survival of microbial isolates from clouds toward simulated atmospheric stress factors". Atmospheric Environment. 117: 92–98. Bibcode:2015AtmEn.117...92J. doi:10.1016/j.atmosenv.2015.07.009.
  217. Huang, Mingwei; Hull, Christina M. (2017). "Sporulation: How to survive on planet Earth (And beyond)". Current Genetics. 63 (5): 831–838. doi:10.1007/s00294-017-0694-7. PMC   5647196 . PMID   28421279.
  218. Hanson, China A.; Fuhrman, Jed A.; Horner-Devine, M. Claire; Martiny, Jennifer B. H. (2012). "Beyond biogeographic patterns: Processes shaping the microbial landscape". Nature Reviews Microbiology. 10 (7): 497–506. doi:10.1038/nrmicro2795. PMID   22580365. S2CID   19575573.
  219. Barberán, Albert; Henley, Jessica; Fierer, Noah; Casamayor, Emilio O. (2014). "Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities". Science of the Total Environment. 487: 187–195. Bibcode:2014ScTEn.487..187B. doi:10.1016/j.scitotenv.2014.04.030. PMID   24784743.
  220. Spracklen, D. V.; Heald, C. L. (2014). "The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates". Atmospheric Chemistry and Physics. 14 (17): 9051–9059. Bibcode:2014ACP....14.9051S. doi: 10.5194/acp-14-9051-2014 . S2CID   3290942.
  221. Favet, Jocelyne; Lapanje, Ales; Giongo, Adriana; Kennedy, Suzanne; Aung, Yin-Yin; Cattaneo, Arlette; Davis-Richardson, Austin G.; Brown, Christopher T.; Kort, Renate; Brumsack, Hans-Jürgen; Schnetger, Bernhard; Chappell, Adrian; Kroijenga, Jaap; Beck, Andreas; Schwibbert, Karin; Mohamed, Ahmed H.; Kirchner, Timothy; De Quadros, Patricia Dorr; Triplett, Eric W.; Broughton, William J.; Gorbushina, Anna A. (2013). "Microbial hitchhikers on intercontinental dust: Catching a lift in Chad". The ISME Journal. 7 (4): 850–867. doi:10.1038/ismej.2012.152. PMC   3603401 . PMID   23254516.
  222. Michaud, Jennifer M.; Thompson, Luke R.; Kaul, Drishti; Espinoza, Josh L.; Richter, R. Alexander; Xu, Zhenjiang Zech; Lee, Christopher; Pham, Kevin M.; Beall, Charlotte M.; Malfatti, Francesca; Azam, Farooq; Knight, Rob; Burkart, Michael D.; Dupont, Christopher L.; Prather, Kimberly A. (2018). "Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm". Nature Communications. 9 (1): 2017. Bibcode:2018NatCo...9.2017M. doi:10.1038/s41467-018-04409-z. PMC   5964107 . PMID   29789621.
  223. Zhang, Renyi; Wang, Gehui; Guo, Song; Zamora, Misti L.; Ying, Qi; Lin, Yun; Wang, Weigang; Hu, Min; Wang, Yuan (2015). "Formation of Urban Fine Particulate Matter". Chemical Reviews. 115 (10): 3803–3855. doi:10.1021/acs.chemrev.5b00067. PMID   25942499.
  224. Zhang, Qiang; He, Kebin; Huo, Hong (2012). "Cleaning China's air". Nature. 484 (7393): 161–162. doi:10.1038/484161a. PMID   22498609. S2CID   205071037.
  225. Lee, Jae Young; Park, Eun Ha; Lee, Sunghee; Ko, Gwangpyo; Honda, Yasushi; Hashizume, Masahiro; Deng, Furong; Yi, Seung-muk; Kim, Ho (2017). "Airborne Bacterial Communities in Three East Asian Cities of China, South Korea, and Japan". Scientific Reports. 7 (1): 5545. Bibcode:2017NatSR...7.5545L. doi:10.1038/s41598-017-05862-4. PMC   5514139 . PMID   28717138.
  226. "Cleaner urban air tomorrow?". Nature Geoscience. 10 (2): 69. 2017. Bibcode:2017NatGe..10...69.. doi: 10.1038/ngeo2893 .
  227. Kim, Ki-Hyun; Kabir, Ehsanul; Kabir, Shamin (2015). "A review on the human health impact of airborne particulate matter". Environment International. 74: 136–143. doi:10.1016/j.envint.2014.10.005. PMID   25454230.
  228. Walton, H., Dajnak, D., Beevers, S., Williams, M., Watkiss, P. and Hunt, A. (2015) "Understanding the health impacts of air pollution in London". King's College London, Transport for London and the Greater London Authority, 1(1): 6–14.
  229. Zheng, S.; Pozzer, A.; Cao, C. X.; Lelieveld, J. (2015). "Long-term (2001–2012) concentrations of fine particulate matter (PM2.5) and the impact on human health in Beijing, China". Atmospheric Chemistry and Physics. 15 (10): 5715–5725. Bibcode:2015ACP....15.5715Z. doi: 10.5194/acp-15-5715-2015 .
  230. Conibear, Luke; Butt, Edward W.; Knote, Christoph; Arnold, Stephen R.; Spracklen, Dominick V. (2018). "Residential energy use emissions dominate health impacts from exposure to ambient particulate matter in India". Nature Communications. 9 (1): 617. Bibcode:2018NatCo...9..617C. doi:10.1038/s41467-018-02986-7. PMC   5809377 . PMID   29434294. S2CID   205559548.
  231. Huang, Ru-Jin; Zhang, Yanlin; Bozzetti, Carlo; Ho, Kin-Fai; Cao, Jun-Ji; Han, Yongming; Daellenbach, Kaspar R.; Slowik, Jay G.; Platt, Stephen M.; Canonaco, Francesco; Zotter, Peter; Wolf, Robert; Pieber, Simone M.; Bruns, Emily A.; Crippa, Monica; Ciarelli, Giancarlo; Piazzalunga, Andrea; Schwikowski, Margit; Abbaszade, Gülcin; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; An, Zhisheng; Szidat, Sönke; Baltensperger, Urs; Haddad, Imad El; Prévôt, André S. H. (2014). "High secondary aerosol contribution to particulate pollution during haze events in China" (PDF). Nature. 514 (7521): 218–222. Bibcode:2014Natur.514..218H. doi:10.1038/nature13774. PMID   25231863. S2CID   205240719.
  232. Stein, Michelle M.; Hrusch, Cara L.; Gozdz, Justyna; Igartua, Catherine; Pivniouk, Vadim; Murray, Sean E.; Ledford, Julie G.; Marques Dos Santos, Mauricius; Anderson, Rebecca L.; Metwali, Nervana; Neilson, Julia W.; Maier, Raina M.; Gilbert, Jack A.; Holbreich, Mark; Thorne, Peter S.; Martinez, Fernando D.; von Mutius, Erika; Vercelli, Donata; Ober, Carole; Sperling, Anne I. (2016). "Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children". New England Journal of Medicine. 375 (5): 411–421. doi:10.1056/NEJMoa1508749. PMC   5137793 . PMID   27518660.
  233. Valkonen, M.; Täubel, M.; Pekkanen, J.; Tischer, C.; Rintala, H.; Zock, J.-P.; Casas, L.; Probst-Hensch, N.; Forsberg, B.; Holm, M.; Janson, C.; Pin, I.; Gislason, T.; Jarvis, D.; Heinrich, J.; Hyvärinen, A. (2018). "Microbial characteristics in homes of asthmatic and non-asthmatic adults in the ECRHS cohort". Indoor Air. 28 (1): 16–27. doi: 10.1111/ina.12427 . hdl:10138/238079. PMID   28960492. S2CID   26769029.
  234. Bharadwaj, Prashant; Zivin, Joshua Graff; Mullins, Jamie T.; Neidell, Matthew (2016). "Early-Life Exposure to the Great Smog of 1952 and the Development of Asthma". American Journal of Respiratory and Critical Care Medicine. 194 (12): 1475–1482. doi:10.1164/rccm.201603-0451OC. PMC   5440984 . PMID   27392261.
  235. Cao, Chen; Jiang, Wenjun; Wang, Buying; Fang, Jianhuo; Lang, Jidong; Tian, Geng; Jiang, Jingkun; Zhu, Ting F. (2014). "Inhalable Microorganisms in Beijing's PM2.5 and PM10 Pollutants during a Severe Smog Event". Environmental Science & Technology. 48 (3): 1499–1507. Bibcode:2014EnST...48.1499C. doi:10.1021/es4048472. PMC   3963435 . PMID   24456276. S2CID   14761200.
  236. 1 2 Jiang, Wenjun; Liang, Peng; Wang, Buying; Fang, Jianhuo; Lang, Jidong; Tian, Geng; Jiang, Jingkun; Zhu, Ting F. (2015). "Optimized DNA extraction and metagenomic sequencing of airborne microbial communities". Nature Protocols. 10 (5): 768–779. doi:10.1038/nprot.2015.046. PMC   7086576 . PMID   25906115.
  237. 1 2 3 4 Qin, Nan; Liang, Peng; Wu, Chunyan; Wang, Guanqun; Xu, Qian; Xiong, Xiao; Wang, Tingting; Zolfo, Moreno; Segata, Nicola; Qin, Huanlong; Knight, Rob; Gilbert, Jack A.; Zhu, Ting F. (2020). "Longitudinal survey of microbiome associated with particulate matter in a megacity". Genome Biology. 21 (1): 55. doi: 10.1186/s13059-020-01964-x . PMC   7055069 . PMID   32127018. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  238. Pal, Chandan; Bengtsson-Palme, Johan; Kristiansson, Erik; Larsson, D. G. Joakim (2016). "The structure and diversity of human, animal and environmental resistomes". Microbiome. 4 (1): 54. doi: 10.1186/s40168-016-0199-5 . PMC   5055678 . PMID   27717408.
  239. Amato, Pierre (1 January 2012). "Clouds Provide Atmospheric Oases for Microbes". Microbe Magazine. 7 (3). American Society for Microbiology: 119–123. doi:10.1128/microbe.7.119.1. ISSN   1558-7452.
  240. Amato, P.; Brisebois, E.; Draghi, M.; Duchaine, C.; Fröhlich-Nowoisky, J.; Huffman, J.A.; Mainelis, G.; Robine, E.; Thibaudon, M. (2017). "Main Biological Aerosols, Specificities, Abundance, and Diversity". Microbiology of Aerosols. pp. 1–21. doi:10.1002/9781119132318.ch1a. ISBN   9781119132318.
  241. Brodie, E. L.; Desantis, T. Z.; Parker, J. P. M.; Zubietta, I. X.; Piceno, Y. M.; Andersen, G. L. (2007). "Urban aerosols harbor diverse and dynamic bacterial populations". Proceedings of the National Academy of Sciences. 104 (1): 299–304. Bibcode:2007PNAS..104..299B. doi: 10.1073/pnas.0608255104 . PMC   1713168 . PMID   17182744.
  242. Courault, D.; Albert, I.; Perelle, S.; Fraisse, A.; Renault, P.; Salemkour, A.; Amato, P. (2017). "Assessment and risk modeling of airborne enteric viruses emitted from wastewater reused for irrigation". Science of the Total Environment. 592: 512–526. Bibcode:2017ScTEn.592..512C. doi:10.1016/j.scitotenv.2017.03.105. PMID   28320526.
  243. Aller, Josephine Y.; Kuznetsova, Marina R.; Jahns, Christopher J.; Kemp, Paul F. (2005). "The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols". Journal of Aerosol Science. 36 (5–6): 801–812. Bibcode:2005JAerS..36..801A. doi:10.1016/j.jaerosci.2004.10.012.
  244. Burrows, S. M.; Butler, T.; Jöckel, P.; Tost, H.; Kerkweg, A.; Pöschl, U.; Lawrence, M. G. (2009). "Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems". Atmospheric Chemistry and Physics. 9 (23): 9281–9297. Bibcode:2009ACP.....9.9281B. doi: 10.5194/acp-9-9281-2009 .
  245. Bauer, Heidi; Giebl, Heinrich; Hitzenberger, Regina; Kasper-Giebl, Anne; Reischl, Georg; Zibuschka, Franziska; Puxbaum, Hans (2003). "Airborne bacteria as cloud condensation nuclei". Journal of Geophysical Research: Atmospheres. 108 (D21): 4658. Bibcode:2003JGRD..108.4658B. doi:10.1029/2003JD003545.
  246. Morris, C. E.; Georgakopoulos, D. G.; Sands, D. C. (2004). "Ice nucleation active bacteria and their potential role in precipitation". Journal de Physique IV (Proceedings). 121: 87–103. doi:10.1051/jp4:2004121004.
  247. Morris, C.E.; Sands, D.C. (2017). "Impacts of Microbial Aerosols on Natural and Agro-ecosystems: Immigration, Invasions, and their Consequences". Microbiology of Aerosols. pp. 269–279. doi:10.1002/9781119132318.ch4b. ISBN   9781119132318.
  248. Smith, David J.; Griffin, Dale W.; McPeters, Richard D.; Ward, Peter D.; Schuerger, Andrew C. (2011). "Microbial survival in the stratosphere and implications for global dispersal". Aerobiologia. 27 (4): 319–332. doi:10.1007/s10453-011-9203-5. S2CID   52107037.
  249. Amato, P.; Joly, M.; Schaupp, C.; Attard, E.; Möhler, O.; Morris, C. E.; Brunet, Y.; Delort, A.-M. (2015). "Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber". Atmospheric Chemistry and Physics. 15 (11): 6455–6465. Bibcode:2015ACP....15.6455A. doi: 10.5194/acp-15-6455-2015 .
  250. Hill, Kimberly A.; Shepson, Paul B.; Galbavy, Edward S.; Anastasio, Cort; Kourtev, Peter S.; Konopka, Allan; Stirm, Brian H. (2007). "Processing of atmospheric nitrogen by clouds above a forest environment". Journal of Geophysical Research. 112 (D11): D11301. Bibcode:2007JGRD..11211301H. doi:10.1029/2006JD008002.
  251. Hara, Kazutaka; Zhang, Daizhou (2012). "Bacterial abundance and viability in long-range transported dust". Atmospheric Environment. 47: 20–25. Bibcode:2012AtmEn..47...20H. doi:10.1016/j.atmosenv.2011.11.050.
  252. Temkiv, Tina Šantl; Finster, Kai; Hansen, Bjarne Munk; Nielsen, Niels Woetmann; Karlson, Ulrich Gosewinkel (2012). "The microbial diversity of a storm cloud as assessed by hailstones". FEMS Microbiology Ecology. 81 (3): 684–695. doi: 10.1111/j.1574-6941.2012.01402.x . PMID   22537388.
  253. Fuzzi, Sandro; Mandrioli, Paolo; Perfetto, Antonio (1997). "Fog droplets—an atmospheric source of secondary biological aerosol particles". Atmospheric Environment. 31 (2): 287–290. Bibcode:1997AtmEn..31..287F. doi:10.1016/1352-2310(96)00160-4.
  254. Sattler, Birgit; Puxbaum, Hans; Psenner, Roland (2001). "Bacterial growth in supercooled cloud droplets". Geophysical Research Letters. 28 (2): 239–242. Bibcode:2001GeoRL..28..239S. doi: 10.1029/2000GL011684 . S2CID   129784139.
  255. Rosenfeld, Daniel; Zhu, Yannian; Wang, Minghuai; Zheng, Youtong; Goren, Tom; Yu, Shaocai (2019). "Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds". Science. 363 (6427). doi: 10.1126/science.aav0566 . PMID   30655446. S2CID   58612273.
  256. 1 2 Charlson, Robert J.; Lovelock, James E.; Andreae, Meinrat O.; Warren, Stephen G. (1987). "Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate". Nature. 326 (6114): 655–661. Bibcode:1987Natur.326..655C. doi:10.1038/326655a0. S2CID   4321239.
  257. 1 2 Gantt, B.; Meskhidze, N. (2013). "The physical and chemical characteristics of marine primary organic aerosol: A review". Atmospheric Chemistry and Physics. 13 (8): 3979–3996. Bibcode:2013ACP....13.3979G. doi: 10.5194/acp-13-3979-2013 .
  258. Meskhidze, Nicholas; Nenes, Athanasios (2006). "Phytoplankton and Cloudiness in the Southern Ocean". Science. 314 (5804): 1419–1423. Bibcode:2006Sci...314.1419M. doi: 10.1126/science.1131779 . PMID   17082422. S2CID   36030601.
  259. Andreae, M.O.; Rosenfeld, D. (2008). "Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols". Earth-Science Reviews. 89 (1–2): 13–41. Bibcode:2008ESRv...89...13A. doi:10.1016/j.earscirev.2008.03.001.
  260. Moore, R. H.; Karydis, V. A.; Capps, S. L.; Lathem, T. L.; Nenes, A. (2013). "Droplet number uncertainties associated with CCN: An assessment using observations and a global model adjoint". Atmospheric Chemistry and Physics. 13 (8): 4235–4251. Bibcode:2013ACP....13.4235M. doi: 10.5194/acp-13-4235-2013 .
  261. 1 2 Sanchez, Kevin J.; Chen, Chia-Li; Russell, Lynn M.; Betha, Raghu; Liu, Jun; Price, Derek J.; Massoli, Paola; Ziemba, Luke D.; Crosbie, Ewan C.; Moore, Richard H.; Müller, Markus; Schiller, Sven A.; Wisthaler, Armin; Lee, Alex K. Y.; Quinn, Patricia K.; Bates, Timothy S.; Porter, Jack; Bell, Thomas G.; Saltzman, Eric S.; Vaillancourt, Robert D.; Behrenfeld, Mike J. (2018). "Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei". Scientific Reports. 8 (1): 3235. Bibcode:2018NatSR...8.3235S. doi:10.1038/s41598-018-21590-9. PMC   5818515 . PMID   29459666.
  262. Flemming, Hans-Curt; Wuertz, Stefan (2019). "Bacteria and archaea on Earth and their abundance in biofilms". Nature Reviews Microbiology. 17 (4): 247–260. doi:10.1038/s41579-019-0158-9. PMID   30760902. S2CID   61155774.
  263. Cavicchioli, R., Ripple, W.J., Timmis, K.N., Azam, F., Bakken, L.R., Baylis, M., Behrenfeld, M.J., Boetius, A., Boyd, P.W., Classen, A.T. and Crowther, T.W. (2019) "Scientists' warning to humanity: microorganisms and climate change". Nature Reviews Microbiology, 17: 569–586. doi : 10.1038/s41579-019-0222-5
  264. 1 2 Greaves, Jane S.; Richards, Anita M. S.; Bains, William; Rimmer, Paul B.; Sagawa, Hideo; Clements, David L.; Seager, Sara; Petkowski, Janusz J.; Sousa-Silva, Clara; Ranjan, Sukrit; Drabek-Maunder, Emily; Fraser, Helen J.; Cartwright, Annabel; Mueller-Wodarg, Ingo; Zhan, Zhuchang; Friberg, Per; Coulson, Iain; Lee, E'lisa; Hoge, Jim (2020). "Phosphine gas in the cloud decks of Venus" (PDF). Nature Astronomy. 5 (7): 655–664. arXiv: 2009.06593 . doi:10.1038/s41550-020-1174-4. ISSN   2397-3366. S2CID   221655755.
  265. 1 2 Hallsworth, John E.; Koop, Thomas; Dallas, Tiffany D.; Zorzano, María-Paz; Burkhardt, Juergen; Golyshina, Olga V.; Martín-Torres, Javier; Dymond, Marcus K.; Ball, Philip; McKay, Christopher P. (2021). "Water activity in Venus's uninhabitable clouds and other planetary atmospheres" (PDF). Nature Astronomy. 5 (7): 665–675. Bibcode:2021NatAs...5..665H. doi:10.1038/s41550-021-01391-3. hdl:10261/261774. ISSN   2397-3366. S2CID   237820246.
  266. 1 2 Berg, Gabriele; Rybakova, Daria; Fischer, Doreen; Cernava, Tomislav; et al. (2020). "Microbiome definition re-visited: Old concepts and new challenges". Microbiome. 8 (1): 103. doi: 10.1186/s40168-020-00875-0 . PMC   7329523 . PMID   32605663. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  267. Meisner, Annelein; Wepner, Beatrix; Kostic, Tanja; Van Overbeek, Leo S.; Bunthof, Christine J.; De Souza, Rafael Soares Correa; Olivares, Marta; Sanz, Yolanda; Lange, Lene; Fischer, Doreen; Sessitsch, Angela; Smidt, Hauke (2022). "Calling for a systems approach in microbiome research and innovation". Current Opinion in Biotechnology. 73: 171–178. doi:10.1016/j.copbio.2021.08.003. hdl: 10261/251784 . PMID   34479027. S2CID   237409945. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  268. Hutchins, David A.; Jansson, Janet K.; Remais, Justin V.; Rich, Virginia I.; Singh, Brajesh K.; Trivedi, Pankaj (2019). "Climate change microbiology — problems and perspectives". Nature Reviews Microbiology. 17 (6): 391–396. doi:10.1038/s41579-019-0178-5. PMID   31092905. S2CID   155102440.
  269. Singh, Brajesh K.; Bardgett, Richard D.; Smith, Pete; Reay, Dave S. (2010). "Microorganisms and climate change: Terrestrial feedbacks and mitigation options". Nature Reviews Microbiology. 8 (11): 779–790. doi:10.1038/nrmicro2439. PMID   20948551. S2CID   1522347.
  270. Cavicchioli, Ricardo; et al. (2019). "Scientists' warning to humanity: Microorganisms and climate change". Nature Reviews Microbiology. 17 (9): 569–586. doi:10.1038/s41579-019-0222-5. PMC   7136171 . PMID   31213707. S2CID   190637591.
  271. Tipton, Laura; Zahn, Geoffrey; Datlof, Erin; Kivlin, Stephanie N.; Sheridan, Patrick; Amend, Anthony S.; Hynson, Nicole A. (2019). "Fungal aerobiota are not affected by time nor environment over a 13-y time series at the Mauna Loa Observatory". Proceedings of the National Academy of Sciences. 116 (51): 25728–25733. Bibcode:2019PNAS..11625728T. doi: 10.1073/pnas.1907414116 . PMC   6926071 . PMID   31801876.
  272. Brągoszewska, Ewa; Pastuszka, Józef S. (2018). "Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland)". Aerobiologia. 34 (2): 241–255. doi:10.1007/s10453-018-9510-1. PMC   5945727 . PMID   29773927. S2CID   21687542.
  273. Ruiz-Gil, Tay; Acuña, Jacquelinne J.; Fujiyoshi, So; Tanaka, Daisuke; Noda, Jun; Maruyama, Fumito; Jorquera, Milko A. (2020). "Airborne bacterial communities of outdoor environments and their associated influencing factors". Environment International. 145: 106156. doi: 10.1016/j.envint.2020.106156 . PMID   33039877. S2CID   222301690.
  274. Lynggaard, Christina; Bertelsen, Mads Frost; Jensen, Casper V.; Johnson, Matthew S.; Frøslev, Tobias Guldberg; Olsen, Morten Tange; Bohmann, Kristine (6 January 2022). "Airborne environmental DNA for terrestrial vertebrate community monitoring". Current Biology. 32 (3): 701–707.e5. doi:10.1016/j.cub.2021.12.014. PMC   8837273 . PMID   34995490. S2CID   245772800.
  275. Clare, Elizabeth L.; Economou, Chloe K.; Bennett, Frances J.; Dyer, Caitlin E.; Adams, Katherine; McRobie, Benjamin; Drinkwater, Rosie; Littlefair, Joanne E. (January 2022). "Measuring biodiversity from DNA in the air". Current Biology. 32 (3): 693–700.e5. doi: 10.1016/j.cub.2021.11.064 . PMID   34995488. S2CID   245772825.
  276. Clare, Elizabeth L.; Economou, Chloe K.; Faulkes, Chris G.; Gilbert, James D.; Bennett, Frances; Drinkwater, Rosie; Littlefair, Joanne E. (2021). "EDNAir: Proof of concept that animal DNA can be collected from air sampling". PeerJ. 9: e11030. doi: 10.7717/peerj.11030 . PMC   8019316 . PMID   33850648. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  277. Researchers can now collect and sequence DNA from the air Live Science , 6 April 2021.
  278. Métris, Kimberly L.; Métris, Jérémy (14 April 2023). "Aircraft surveys for air eDNA: probing biodiversity in the sky". PeerJ. 11: e15171. doi: 10.7717/peerj.15171 . ISSN   2167-8359. PMC   10108859 . PMID   37077310.

General reference