Calcareous nannofossils

Last updated
Discoaster surculus fossil, 15 microns across. The extinction of this species officially marks the beginning of the Quaternary period Discoaster surculus 01.jpg
Discoaster surculus fossil, 15 microns across. The extinction of this species officially marks the beginning of the Quaternary period

Calcareous nannofossils are a class of tiny (less than 30 microns in diameter [1] ) microfossils that are similar to coccoliths deposited by the modern-day coccolithophores. [2] The nannofossils are a convenient source of geochronological data due to the abundance and rapid evolution of the single-cell organisms forming them (nannoplankton) [3] and ease of handling of the sediment samples. [4] The practical applications of calcareous nannofossils in the areas of biostratigraphy and paleoecology [5] became clear once the deepwater drilling took off in 1968 with the Deep Sea Drilling Project, [4] and they have been extensively studied ever since. [5] Nannofossils provide one of the most important paleontological records with the contiguous length of 220 million years. [6]

Contents

History of research

Christian Gottfried Ehrenberg, while examining the chalk from Ruegen, recorded in 1836 an observation of what was later termed "coccolith" and had pictured the coccoliths and Discoasters in his Mikrogeologie (1854), erroneously classifying these discs as a kind of complex spheric concretion. T. H. Huxley coined the term coccoliths in 1858 (due to their shape resembling the Protococcus), while agreeing with their inorganic nature. [5] In 1861 George Charles Wallich and, independently, Henry Clifton Sorby, figured out the organic nature of coccoliths after observing their aggregations, coccospheres. Huxley then changed his views and declared that coccoliths are skeletal elements of an unknown organism, Bathybius haeckelii, a primordial form of organic life. One of the goals of the Challenger expedition was to understand the nature of the Bathybius, [7] but the scientists aboard the ship reached the conclusion that the gel-like substance apparently holding the disks in a coccosphere together was a result of processing the samples [7] and later declared the coccoliths to constitute the defensive armor of tiny nannoplankton algae (the term was coined in 1909 by Hans Lohmann  [ de ] to identify the tiniest plankton, less than 60 microns in size, that passed through the regular phytoplankton nets). [4]

Research of the nannoplankton systematics in the early 20th century (Erwin Kamptner, Georges Deflandre  [ fr ], and Trygve Braarud [8] ) enabled M. N. Bramlette and W. R. Riedel [9] to successfully use the nannofossils for biostratigraphy (1954). The Deep Sea Drilling Project (DSDP, 1968) revealed the power of the technique: stratigraphic positions were found within minutes after the drilling core was hauled aboard the ship. At the same time, the continuous DSDP cores provided a solid foundation for setting up the nannofossil biozones. [4] It took decades to establish comprehensive chronological schemes (e.g. Martini 1971; Sissingh 1977; Roth 1978; Okada & Bukry 1980). [10]

The researchers started to use the transmission electron microscopes in the mid-1950s, switching to scanning electron microscopes in the 1960s and 1970s. Optical microscopes with cross-polarization and phase-contrast illumination, techniques introduced in 1952 by Kamptner and Braarud & Nordli respectively, are still used for routine field work. [9]

Terminology

The terminology in the field evolved over time and nannofossils are also sometimes called "nannoplankton" and "coccoliths" as well as some other names, especially in the literature published in 1950s and 1960s. The term "calcareous nannofossil" was chosen in the DSDP publications (although it was rarely used prior to that) and gained popularity afterwards, in the early 1970s. [4] "Calcareous" is derived from Latin : calx, "lime", and means "containing lime". [11]

Siesser & Haq describe the general use as follows: [12]

Siesser & Haq themselves use nannoplankton as a generic way to refer to all organisms, whether living or extinct and nannofossils when describing specifically the fossil forms.

Biostratigraphy

Multiple characteristics of the calcareous nannofossils make them a valuable tool of biostratigraphy and biochronology: [13]

The calcareous nannofossils can be found in the deposits that stretch from the Late Triassic to the modern times. The calcareous nannoplankton biodiversity grew in the Jurassic and Cretaceous periods peaking at about 150 species in the Late Cretaceous. [15]

The boundaries of the biozones in stratigraphy are defined by the biohorizons, points in strata where significant changes in fossil content and distribution occur. Typical events used for biohorizons are: first occurrence, last occurrence, change in abundance of taxons. A combination of biozones arranged in stratigraphical order results in a zonation (or scheme). [10]

The first Cenozoic biozonation with 21 biozones for Neogene and 25 biozones for Palaeogene was published in 1971 by Martini, it used alphanumeric notation starting with NN for the Neogene and NP for the Palaeogene (first N stands for Nannoplankton), the enumeration increased from the deepest stratigraphic layer. Okada & Bukry introduced their schemes in 1980 with zones code-numbered with letters CN and CP (C stands for Coccolith). Agnini et al. in 2017 had combined the scales, reintroducing the new biohorizons for the unreliable ones, resulting in schemes coded with CNP for Palaeocene, CNE for Eocene, CNO for Oligocene, CNM for Miocene, CNPL for Pliocene/Pleistocene (CN stands for Calcareous Nannofossils). [16]

The agreed upon stratification reference is codified as Global Boundary Stratotype Section and Point (GSSP) by the International Commission on Stratigraphy. The calcareous nannofossils, with very few exceptions, provide clear biohorizons indicating the positions of the GSSP boundaries in Cenozoic. [16]

Other uses

Calcareous nannofossils are being used in archaeology to establish the provenance of various artefacts: ceramics, tesserae, grounds of paintings, statues, and masonry. [17]

Related Research Articles

<span class="mw-page-title-main">Coccolithophore</span> Unicellular algae responsible for the formation of chalk

Coccolithophores, or coccolithophorids, are single-celled organisms which are part of the phytoplankton, the autotrophic (self-feeding) component of the plankton community. They form a group of about 200 species, and belong either to the kingdom Protista, according to Robert Whittaker's five-kingdom system, or clade Hacrobia, according to a newer biological classification system. Within the Hacrobia, the coccolithophores are in the phylum or division Haptophyta, class Prymnesiophyceae. Coccolithophores are almost exclusively marine, are photosynthetic, and exist in large numbers throughout the sunlight zone of the ocean.

<span class="mw-page-title-main">Haptophyte</span> Type of algae

The haptophytes, classified either as the Haptophyta, Haptophytina or Prymnesiophyta, are a clade of algae.

<span class="mw-page-title-main">Coccolith</span> Calcium carbonate scales covering some phytoplankton species

Coccoliths are individual plates or scales of calcium carbonate formed by coccolithophores and cover the cell surface arranged in the form of a spherical shell, called a coccosphere.

<span class="mw-page-title-main">Micropaleontology</span> Branch of paleontology that studies microfossils

Micropaleontology is the branch of paleontology (palaeontology) that studies microfossils, or fossils that require the use of a microscope to see the organism, its morphology and its characteristic details.

<span class="mw-page-title-main">Microfossil</span> Fossil that requires the use of a microscope to see it

A microfossil is a fossil that is generally between 0.001 mm and 1 mm in size, the visual study of which requires the use of light or electron microscopy. A fossil which can be studied with the naked eye or low-powered magnification, such as a hand lens, is referred to as a macrofossil.

<i>Emiliania huxleyi</i> Unicellular algae responsible for the formation of chalk

Emiliania huxleyi is a species of coccolithophore found in almost all ocean ecosystems from the equator to sub-polar regions, and from nutrient rich upwelling zones to nutrient poor oligotrophic waters. It is one of thousands of different photosynthetic plankton that freely drift in the photic zone of the ocean, forming the basis of virtually all marine food webs. It is studied for the extensive blooms it forms in nutrient-depleted waters after the reformation of the summer thermocline. Like other coccolithophores, E. huxleyi is a single-celled phytoplankton covered with uniquely ornamented calcite disks called coccoliths. Individual coccoliths are abundant in marine sediments although complete coccospheres are more unusual. In the case of E. huxleyi, not only the shell, but also the soft part of the organism may be recorded in sediments. It produces a group of chemical compounds that are very resistant to decomposition. These chemical compounds, known as alkenones, can be found in marine sediments long after other soft parts of the organisms have decomposed. Alkenones are most commonly used by earth scientists as a means to estimate past sea surface temperatures.

The Gelasian is an age in the international geologic timescale or a stage in chronostratigraphy, being the earliest or lowest subdivision of the Quaternary Period/System and Pleistocene Epoch/Series. It spans the time between 2.58 Ma and 1.80 Ma. It follows the Piacenzian Stage and is followed by the Calabrian Stage.

The Bartonian is, in the International Commission on Stratigraphy's (ICS) geologic time scale, a stage or age in the middle of the Eocene Epoch or Series. The Bartonian Age spans the time between 41.2 and37.71 Ma. It is preceded by the Lutetian and is followed by the Priabonian Age.

<span class="mw-page-title-main">Carnian</span> First age of the Late Triassic epoch

The Carnian is the lowermost stage of the Upper Triassic Series. It lasted from 237 to 227 million years ago (Ma). The Carnian is preceded by the Ladinian and is followed by the Norian. Its boundaries are not characterized by major extinctions or biotic turnovers, but a climatic event occurred during the Carnian and seems to be associated with important extinctions or biotic radiations. Another extinction occurred at the Carnian-Norian boundary, ending the Carnian age.

The Danian is the oldest age or lowest stage of the Paleocene Epoch or Series, of the Paleogene Period or System, and of the Cenozoic Era or Erathem. The beginning of the Danian is at the Cretaceous–Paleogene extinction event 66 Ma. The age ended 61.6 Ma, being followed by the Selandian.

The Selandian is a stage in the Paleocene. It spans the time between 61.6 and59.2 Ma. It is preceded by the Danian and followed by the Thanetian. Sometimes the Paleocene is subdivided in subepochs, in which the Selandian forms the "middle Paleocene".

<span class="mw-page-title-main">Ypresian</span> First age of the Eocene Epoch

In the geologic timescale the Ypresian is the oldest age or lowest stratigraphic stage of the Eocene. It spans the time between 56 and47.8 Ma, is preceded by the Thanetian Age and is followed by the Eocene Lutetian Age. The Ypresian is consistent with the lower Eocene.

The Priabonian is, in the ICS's geologic timescale, the latest age or the upper stage of the Eocene Epoch or Series. It spans the time between 37.71 and33.9 Ma. The Priabonian is preceded by the Bartonian and is followed by the Rupelian, the lowest stage of the Oligocene.

The Chattian is, in the geologic timescale, the younger of two ages or upper of two stages of the Oligocene Epoch/Series. It spans the time between 27.82 and23.03 Ma. The Chattian is preceded by the Rupelian and is followed by the Aquitanian.

<span class="mw-page-title-main">Marine sediment</span>

Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor. These particles either have their origins in soil and rocks and have been transported from the land to the sea, mainly by rivers but also by dust carried by wind and by the flow of glaciers into the sea, or they are biogenic deposits from marine organisms or from chemical precipitation in seawater, as well as from underwater volcanoes and meteorite debris.

<span class="mw-page-title-main">Haynesville Shale</span>

The Haynesville Shale is an informal, popular name for a Jurassic Period rock formation that underlies large parts of southwestern Arkansas, northwest Louisiana, and East Texas. It lies at depths of 10,500 to 13,000 feet below the land’s surface. It is part of a large rock formation which is known by geologists as the Haynesville Formation. The Haynesville Shale underlies an area of about 9,000 square miles and averages about 200 to 300 feet thick. The Haynesville Shale is overlain by sandstone of the Cotton Valley Group and underlain by limestone of the Smackover Formation.

<span class="mw-page-title-main">Marine biogenic calcification</span> Shell formation mechanism

Marine biogenic calcification is the production of calcium carbonate by organisms in the global ocean.

The Calcare di Sogno is a geological formation in Italy, dated to roughly between 182-169 million years ago and covering the Lower Toarcian-Late Bajocian stagess of the Jurassic Period in the Mesozoic Era. Thallatosuchian remains are known from the formation, as well fishes and other taxa.

<span class="mw-page-title-main">Protists in the fossil record</span>

A protist is any eukaryotic organism that is not an animal, plant, or fungus. While it is likely that protists share a common ancestor, the last eukaryotic common ancestor, the exclusion of other eukaryotes means that protists do not form a natural group, or clade. Therefore, some protists may be more closely related to animals, plants, or fungi than they are to other protists. However, like algae, invertebrates and protozoans, the grouping is used for convenience.

Land vertebrate faunachrons (LVFs) are biochronological units used to correlate and date terrestrial sediments and fossils based on their tetrapod faunas. First formulated on a global scale by Spencer G. Lucas in 1998, LVFs are primarily used within the Triassic Period, though Lucas later designated LVFs for other periods as well. Eight worldwide LVFs are defined for the Triassic. The first two earliest Triassic LVFs, the Lootsbergian and Nonesian, are based on South African synapsids and faunal assemblage zones estimated to correspond to the Early Triassic. These are followed by the Perovkan and Berdyankian, based on temnospondyl amphibians and Russian assemblages estimated to be from the Middle Triassic. The youngest four Triassic LVFs, the Otischalkian, Adamanian, Revueltian, and Apachean, are based on aetosaur and phytosaur reptiles common in the Late Triassic of the southwestern United States.

References

Sources