Bathybius haeckelii was a substance that British biologist Thomas Henry Huxley discovered and initially believed to be a form of primordial matter, a source of all organic life. He later admitted his mistake when it proved to be just the product of an inorganic chemical process (precipitation).
In 1868 Huxley studied an old sample of mud from the Atlantic seafloor taken in 1857. When he first examined it, he had found only protozoan cells and placed the sample into a jar of alcohol to preserve it. Now he noticed that the sample contained an albuminous slime that appeared to be criss-crossed with veins.
Huxley thought he had discovered a new organic substance and named it Bathybius haeckelii, in honor of German biologist Ernst Haeckel. Haeckel had theorized about Urschleim ("primordial slime"), a protoplasm from which all life had originated. Huxley thought Bathybius could be that protoplasm, a missing link (in modern terms) between inorganic matter and organic life.
Huxley published a description of Bathybius that year [1] and also wrote to Haeckel to tell him about it. Haeckel was impressed and flattered and procured a sample for himself. In the next edition of his textbook The History of Creation Haeckel suggested that the substance was constantly coming into being at the bottom of the sea, "monera" arising from nonliving matter due to "physicochemical causes." [2] Huxley asserted in a speech given to the Royal Geographical Society in 1870 that Bathybius undoubtedly formed a continuous mat of living protoplasm that covered the whole ocean floor for thousands of square miles, probably a continuous sheet around the Earth. [2]
Sir Charles Wyville Thomson examined some samples in 1869 and regarded them as analogous to mycelium; "no trace of differentiation of organs", "an amorphous sheet of a protein compound, irritable to a low degree and capable of assimilating food... a diffused formless protoplasm." [2]
Other scientists were less enthusiastic. George Charles Wallich claimed that Bathybius was a product of chemical disintegration.
In 1872 the Challenger expedition began; it spent three years studying the oceans. The expedition also took soundings at 361 ocean stations. They did not find any sign of Bathybius, despite the claim that it was a nearly universal substance. In 1875 ship's chemist John Young Buchanan analyzed a substance that looked like Bathybius from an earlier collected sample. He noticed that it was a precipitate of calcium sulfate from the seawater that had reacted with the preservative liquid (alcohol), forming a gelatinous ooze which clung to particles as if ingesting them. [2] Buchanan suspected that all the Bathybius samples had been prepared the same way and notified Sir Charles Thomson, now the leader of the expedition. Thomson sent a polite letter to Huxley and told about the discovery.
Huxley realized that he had been too eager and made a mistake. He published part of the letter in Nature and recanted his previous views. Later, during the 1879 meeting of the British Association for the Advancement of Science, he stated that he was ultimately responsible for spreading the theory and convincing others.
Most biologists accepted this acknowledgement of error. Haeckel, however, did not want to abandon the idea of Bathybius because it was so close to proof of his own theories about Urschleim. He claimed without foundation that Bathybius "had been observed" in the Atlantic. Haeckel drew a series of pictures of the evolution of his Urschleim, supposedly based on observations. He continued to support this position until 1883.
Huxley's rival George Charles Wallich claimed that Huxley had committed deliberate fraud and also accused Haeckel of falsifying data. Other opponents of evolution, including George Campbell, 8th Duke of Argyll, tried to use the case as an argument against evolution. The entire affair was a blow to the evolutionary cause, who had posited it as their long-sought evolutionary origin of life from nonliving chemistry by natural processes, without the necessity of divine intervention. In retrospect, their error was in dismissing the necessary role of photosynthesis in supporting the entire food chain of life; and the corresponding requirement for sunlight, abundant at the surface, but absent on the ocean floor. [2]
Darwinism is a term used to describe a theory of biological evolution developed by the English naturalist Charles Darwin (1809–1882) and others. The theory states that all species of organisms arise and develop through the natural selection of small, inherited variations that increase the individual's ability to compete, survive, and reproduce. Also called Darwinian theory, it originally included the broad concepts of transmutation of species or of evolution which gained general scientific acceptance after Darwin published On the Origin of Species in 1859, including concepts which predated Darwin's theories. English biologist Thomas Henry Huxley coined the term Darwinism in April 1860.
Ernst Heinrich Philipp August Haeckel was a German zoologist, naturalist, eugenicist, philosopher, physician, professor, marine biologist and artist. He discovered, described and named thousands of new species, mapped a genealogical tree relating all life forms and coined many terms in biology, including ecology, phylum, phylogeny, and Protista. Haeckel promoted and popularised Charles Darwin's work in Germany and developed the influential but no longer widely held recapitulation theory claiming that an individual organism's biological development, or ontogeny, parallels and summarises its species' evolutionary development, or phylogeny.
The theory of recapitulation, also called the biogenetic law or embryological parallelism—often expressed using Ernst Haeckel's phrase "ontogeny recapitulates phylogeny"—is a historical hypothesis that the development of the embryo of an animal, from fertilization to gestation or hatching (ontogeny), goes through stages resembling or representing successive adult stages in the evolution of the animal's remote ancestors (phylogeny). It was formulated in the 1820s by Étienne Serres based on the work of Johann Friedrich Meckel, after whom it is also known as Meckel–Serres law.
Slime mold or slime mould is an informal name given to a polyphyletic assemblage of unrelated eukaryotic organisms in the Stramenopiles, Rhizaria, Discoba, Amoebozoa and Holomycota clades. Most are microscopic; those in the Myxogastria form larger plasmodial slime molds visible to the naked eye. The slime mold life cycle includes a free-living single-celled stage and the formation of spores. Spores are often produced in macroscopic multicellular or multinucleate fruiting bodies that may be formed through aggregation or fusion; aggregation is driven by chemical signals called acrasins. Slime molds contribute to the decomposition of dead vegetation; some are parasitic.
Thomas Henry Huxley was an English biologist and anthropologist who specialized in comparative anatomy. He has become known as "Darwin's Bulldog" for his advocacy of Charles Darwin's theory of evolution.
The Challenger expedition of 1872–1876 was a scientific programme that made many discoveries to lay the foundation of oceanography. The expedition was named after the naval vessel that undertook the trip, HMS Challenger.
Stanley Lloyd Miller was an American chemist who made important experiments concerning the origin of life by demonstrating that a wide range of vital organic compounds can be synthesized by fairly simple chemical processes from inorganic substances. In 1952 he performed the Miller–Urey experiment, which showed that complex organic molecules could be synthesised from inorganic precursors. The experiment was widely reported, and provided evidence for the idea that the chemical evolution of the early Earth had caused the natural synthesis of organic compounds from inanimate inorganic molecules.
Spontaneous generation is a superseded scientific theory that held that living creatures could arise from nonliving matter and that such processes were commonplace and regular. It was hypothesized that certain forms, such as fleas, could arise from inanimate matter such as dust, or that maggots could arise from dead flesh. The doctrine of spontaneous generation was coherently synthesized by the Greek philosopher and naturalist Aristotle, who compiled and expanded the work of earlier natural philosophers and the various ancient explanations for the appearance of organisms. Spontaneous generation was taken as scientific fact for two millennia. Though challenged in the 17th and 18th centuries by the experiments of the Italian biologists Francesco Redi and Lazzaro Spallanzani, it was not discredited until the work of the French chemist Louis Pasteur and the Irish physicist John Tyndall in the mid-19th century.
Vitalism is a belief that starts from the premise that "living organisms are fundamentally different from non-living entities because they contain some non-physical element or are governed by different principles than are inanimate things." Where vitalism explicitly invokes a vital principle, that element is often referred to as the "vital spark", "energy", "élan vital", "vital force", or "vis vitalis", which some equate with the soul. In the 18th and 19th centuries, vitalism was discussed among biologists, between those who felt that the known mechanics of physics would eventually explain the difference between life and non-life and vitalists who argued that the processes of life could not be reduced to a mechanistic process. Vitalist biologists such as Johannes Reinke proposed testable hypotheses meant to show inadequacies with mechanistic explanations, but their experiments failed to provide support for vitalism. Biologists now consider vitalism in this sense to have been refuted by empirical evidence, and hence regard it either as a superseded scientific theory, or, since the mid-20th century, as a pseudoscience.
Protoplasm is the part of a cell that is surrounded by a plasma membrane. It is a mixture of small molecules such as ions, monosaccharides, amino acids, and macromolecules such as proteins, polysaccharides, lipids, etc.
Primordial soup, also known as prebiotic soup, is the hypothetical set of conditions present on the Earth around 3.7 to 4.0 billion years ago. It is an aspect of the heterotrophic theory concerning the origin of life, first proposed by Alexander Oparin in 1924, and J. B. S. Haldane in 1929.
Sir Charles Wyville Thomson was a Scottish natural historian and marine zoologist. He served as the chief scientist on the Challenger expedition; his work there revolutionized oceanography and led to his being knighted.
Élan vital is a term coined by French philosopher Henri Bergson in his 1907 book Creative Evolution, in which he addresses the question of self-organisation and spontaneous morphogenesis of things in an increasingly complex manner. Élan vital was translated in the English edition as "vital impetus", but is usually translated by his detractors as "vital force". It is a hypothetical explanation for evolution and development of organisms, which Bergson linked closely with consciousness – the intuitive perception of experience and the flow of inner time.
Julian Huxley used the phrase "the eclipse of Darwinism" to describe the state of affairs prior to what he called the "modern synthesis". During the "eclipse", evolution was widely accepted in scientific circles but relatively few biologists believed that natural selection was its primary mechanism. Historians of science such as Peter J. Bowler have used the same phrase as a label for the period within the history of evolutionary thought from the 1880s to around 1920, when alternatives to natural selection were developed and explored—as many biologists considered natural selection to have been a wrong guess on Charles Darwin's part, or at least to be of relatively minor importance.
Evolutionary thought, the recognition that species change over time and the perceived understanding of how such processes work, has roots in antiquity—in the ideas of the ancient Greeks, Romans, Chinese, Church Fathers as well as in medieval Islamic science. With the beginnings of modern biological taxonomy in the late 17th century, two opposed ideas influenced Western biological thinking: essentialism, the belief that every species has essential characteristics that are unalterable, a concept which had developed from medieval Aristotelian metaphysics, and that fit well with natural theology; and the development of the new anti-Aristotelian approach to modern science: as the Enlightenment progressed, evolutionary cosmology and the mechanical philosophy spread from the physical sciences to natural history. Naturalists began to focus on the variability of species; the emergence of palaeontology with the concept of extinction further undermined static views of nature. In the early 19th century prior to Darwinism, Jean-Baptiste Lamarck (1744–1829) proposed his theory of the transmutation of species, the first fully formed theory of evolution.
Alfonso Luis Herrera (1868–1942) was a Mexican biologist, author, educator and founder of several institutions in Mexico City. He conducted research into the origin of life in an attempt to develop a new, experimental science which he called plasmogeny.
An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms. Autotrophs produce complex organic compounds using carbon from simple substances such as carbon dioxide, generally using energy from light or inorganic chemical reactions. Autotrophs do not need a living source of carbon or energy and are the producers in a food chain, such as plants on land or algae in water. Autotrophs can reduce carbon dioxide to make organic compounds for biosynthesis and as stored chemical fuel. Most autotrophs use water as the reducing agent, but some can use other hydrogen compounds such as hydrogen sulfide.
Marine biology is a hybrid subject that combines aspects of organismal function, ecological interaction and the study of marine biodiversity. The earliest studies of marine biology trace back to the Phoenicians and the Greeks who are known as the initial explorers of the oceans and their composition. The first recorded observations on the distribution and habits of marine life were made by Aristotle.
Collodaria is a unicellular order under the phylum Radiozoa and the infrakingdom Rhizaria. Like most of the Radiolaria taxonomy, Collodaria was first described by Ernst Haeckel, a German scholar who published three volumes of manuscript describing the extensive samples of Radiolaria collected by the voyage of HMS Challenger. Recent molecular phylogenetic studies concluded that there are Collodaria contains three families, Sphaerozodae, Collosphaeridae, and Collophidilidae.
Calcareous nannofossils are a class of tiny microfossils that are similar to coccoliths deposited by the modern-day coccolithophores. The nannofossils are a convenient source of geochronological data due to the abundance and rapid evolution of the single-cell organisms forming them (nannoplankton) and ease of handling of the sediment samples. The practical applications of calcareous nannofossils in the areas of biostratigraphy and paleoecology became clear once the deepwater drilling took off in 1968 with the Deep Sea Drilling Project, and they have been extensively studied ever since. Nannofossils provide one of the most important paleontological records with the contiguous length of 220 million years.