Biozone

Last updated
Biozone types. Each rectangle represents bodies of sedimentary rocks and each line a different taxon. The arrows indicate the taxon first or last appearance. Biozones types EN.svg
Biozone types. Each rectangle represents bodies of sedimentary rocks and each line a different taxon. The arrows indicate the taxon first or last appearance.

In biostratigraphy, biostratigraphic units or biozones are intervals of geological strata that are defined on the basis of their characteristic fossil taxa, as opposed to a lithostratigraphic unit which is defined by the lithological properties of the surrounding rock.

Contents

A biostratigraphic unit is defined by the zone fossils it contains. These may be a single taxon or combinations of taxa if the taxa are relatively abundant, or variations in features related to the distribution of fossils. The same strata may be zoned differently depending on the diagnostic criteria or fossil group chosen, so there may be several, sometimes overlapping, biostratigraphic units in the same interval. Like lithostratigraphic units, biozones must have a type section designated as a stratotype. These stratotypes are named according to the typical taxon (or taxa) that are found in that particular biozone. [1]

The boundary of two distinct biostratigraphic units is called a biohorizon. Biozones can be further subdivided into subbiozones, and multiple biozones can be grouped together in a superbiozone in which the grouped biozones usually have a related characteristic. A succession of biozones is called biozonation. The length of time represented by a biostratigraphic zone is called a biochron. [2] [3]

History

Albert Oppel Albert Oppel (1831-1865).jpg
Albert Oppel

The concept of a biozone was first established by the 19th century paleontologist Albert Oppel, who characterized rock strata by the species of the fossilized animals found in them, which he called zone fossils. Oppel's biozonation was mainly based on Jurassic ammonites he found throughout Europe, which he used to classify the period into 33 zones (now 60). Alcide d'Orbigny would further reinforce the concept in his Prodrome de Paléontologie Stratigraphique, in which he established comparisons between geological stages and their biostratigraphy. [4]

Types of biozone

The International Commission on Stratigraphy defines the following types of biozones: [3]

Range zones

Range zones are biozones defined by the geographic and stratigraphic range of occurrence of a taxon (or taxa). There are two types of range zones:

Taxon-range zones

A taxon-range zone is simply the biozone defined by the first (first appearance datum or FAD) and last (last appearance datum or LAD) occurrence of a single taxon. [4] The boundaries are defined by the lowest and highest stratigraphic occurrence of that particular taxon. Taxon-range zones are named after the taxon in it.

Concurrent-range zone

A concurrent-range zone uses the overlapping range of two taxa, with low boundary defined by the appearance of one taxon and high boundary defined by the disappearance of the other taxon. Concurrent-range zones are named after both of the taxa in it.

Interval zones

An interval zone is defined as the body of strata between two bio-horizons, which are arbitrarily chosen. For example, a highest-occurrence zone is a biozone with the upper boundary being the appearance of one taxon, and the lower boundary the appearance of another taxon.

Lineage zones

A lineage zone, also called a consecutive range zone [1] , are biozones which are defined by being a specific segment of an evolutionary lineage. For example, a zone can be bounded by the highest occurrence of the ancestor of a particular of a taxon and the lowest occurrence of its descendant, or between the lowest occurrence of a taxon and the lowest occurrence of its descendant. Lineage zones are different from most other biozones because they need that the segments its bounded by are successive segments of an evolutionary lineage. This makes them similar to chronostratigraphical units - however, lineage zones, being a biozone, are restricted by the actual spatial range of fossils. [3] [5] Lineage zones are named for the specific taxon they represent.

Assemblage zones

An assemblage zone is a biozone defined by three or more different taxa, which may or may not be related. The boundaries of an assemblage zone are defined by the typical, specified fossil assemblage's occurrence: this can include the appearance, but also the disappearance of certain taxa. [1] Assemblage zones are named for the most characteristic or diagnostic fossils in its assemblage.

Abundance zones

An abundance zone, or acme zone, is a biozone that is defined by the range in which the abundance of a particular taxon is highest. Because an abundance zone requires a statistically high proportion of a particular taxon, the only way to define them is to trace the abundance of the taxon through time. As local environmental factors influence abundance, this can be an unreliable way of defining a biozone. [1] Abundance zones are named after the taxon that is the most abundant within its range.

Zone fossils used for biozonation

Commonly used zone fossils (from the Cambrian onwards). Biostratigraphic index fossils 02.jpg
Commonly used zone fossils (from the Cambrian onwards).

A great variety of species can be used in establishing biozonation. Graptolites and ammonites are some of the most useful as zone fossils, as they preserve well and often have relatively short biozones. [4] Microfossils, such as dinoflagellates, foraminiferans, or plant pollen are also good candidates because they tend to be present even in very small samples and evolve relatively rapidly. [4] [6] Fossils of pigs [7] and cannabis [8] can be used for biozonation of Quaternary rocks as they were used by hominids. [4]

As only a small portion of fossils are preserved, a biozone does not represent the true range of that species in time. Moreover, ranges can be influenced by the Signor-Lipps effect, meaning that the last "disappearance" of a species tends to be observed further back in time than was actually the case. [9]

See also

Related Research Articles

In chronostratigraphy, a stage is a succession of rock strata laid down in a single age on the geologic timescale, which usually represents millions of years of deposition. A given stage of rock and the corresponding age of time will by convention have the same name, and the same boundaries.

<span class="mw-page-title-main">Biostratigraphy</span> Stratigraphy which assigns ages of rock strata by using fossils

Biostratigraphy is the branch of stratigraphy which focuses on correlating and assigning relative ages of rock strata by using the fossil assemblages contained within them. The primary objective of biostratigraphy is correlation, demonstrating that a particular horizon in one geological section represents the same period of time as another horizon at a different section. Fossils within these strata are useful because sediments of the same age can look completely different, due to local variations in the sedimentary environment. For example, one section might have been made up of clays and marls, while another has more chalky limestones. However, if the fossil species recorded are similar, the two sediments are likely to have been laid down around the same time. Ideally these fossils are used to help identify biozones, as they make up the basic biostratigraphy units, and define geological time periods based upon the fossil species found within each section.

<span class="mw-page-title-main">Geological formation</span> Fundamental unit of lithostratigraphy

A geological formation, or simply formation, is a body of rock having a consistent set of physical characteristics (lithology) that distinguishes it from adjacent bodies of rock, and which occupies a particular position in the layers of rock exposed in a geographical region. It is the fundamental unit of lithostratigraphy, the study of strata or rock layers.

A stratigraphic unit is a volume of rock of identifiable origin and relative age range that is defined by the distinctive and dominant, easily mapped and recognizable petrographic, lithologic or paleontologic features (facies) that characterize it.

First appearance datum (FAD) is a term used by geologists and paleontologists to designate the first appearance of a species in the geologic record. FADs are determined by identifying the geologically oldest fossil discovered, to date, of a particular species. A related term is last appearance datum (LAD), the last appearance of a species in the geologic record.

In the geologic timescale, the Kimmeridgian is an age in the Late Jurassic Epoch and a stage in the Upper Jurassic Series. It spans the time between 154.8 ±0.8 Ma and 149.2 ±0.7 Ma. The Kimmeridgian follows the Oxfordian and precedes the Tithonian.

<i>Tapinocephalus</i> Assemblage Zone

The Tapinocephalus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the middle Abrahamskraal Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 2,000 metres (6,600 ft), occur from Merweville and Leeu-Gamka in its southernmost exposures, from Sutherland through to Beaufort West where outcrops start to only be found in the south-east, north of Oudshoorn and Willowmore, reaching up to areas south of Graaff-Reinet. Its northernmost exposures occur around the towns Fraserburg and Victoria West. The Tapinocephalus Assemblage Zone is the second biozone of the Beaufort Group.

<i>Cistecephalus</i> Assemblage Zone

The Cistecephalus Assemblage Zone is a tetrapod assemblage zone or biozone found in the Adelaide Subgroup of the Beaufort Group, a majorly fossiliferous and geologically important geological group of the Karoo Supergroup in South Africa. This biozone has outcrops located in the Teekloof Formation north-west of Beaufort West in the Western Cape, in the upper Middleton and lower Balfour Formations respectively from Colesberg of the Northern Cape to east of Graaff-Reinet in the Eastern Cape. The Cistecephalus Assemblage Zone is one of eight biozones found in the Beaufort Group, and is considered to be Late Permian in age.

<i>Daptocephalus</i> Assemblage Zone

The Daptocephalus Assemblage Zone is a tetrapod assemblage zone or biozone found in the Adelaide Subgroup of the Beaufort Group, a majorly fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. This biozone has outcrops located in the upper Teekloof Formation west of 24°E, the majority of the Balfour Formation east of 24°E, and the Normandien Formation in the north. It has numerous localities which are spread out from Colesberg in the Northern Cape, Graaff-Reniet to Mthatha in the Eastern Cape, and from Bloemfontein to Harrismith in the Free State. The Daptocephalus Assemblage Zone is one of eight biozones found in the Beaufort Group and is considered Late Permian (Lopingian) in age. Its contact with the overlying Lystrosaurus Assemblage Zone marks the Permian-Triassic boundary.

<i>Lystrosaurus</i> Assemblage Zone

The Lystrosaurus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the upper Adelaide and lower Tarkastad Subgroups of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. This biozone has outcrops in the south central Eastern Cape and in the southern and northeastern Free State. The Lystrosaurus Assemblage Zone is one of eight biozones found in the Beaufort Group, and is considered to be Early Triassic in age.

<i>Cynognathus</i> Assemblage Zone Biozone which correlates to the Burgersdorp Formation of the Beaufort Group

The Cynognathus Assemblage Zone is a tetrapod biozone utilized in the Karoo Basin of South Africa. It is equivalent to the Burgersdorp Formation, the youngest lithostratigraphic formation in the Beaufort Group, which is part of the fossiliferous and geologically important Karoo Supergroup. The Cynognathus Assemblage Zone is the youngest of the eight biozones found in the Beaufort Group, and is considered to be late Early Triassic (Olenekian) to early Middle Triassic (Anisian) in age. The name of the biozone refers to Cynognathus crateronotus, a large and carnivorous cynodont therapsid which occurs throughout the entire biozone.

<i>Pristerognathus</i> Assemblage Zone

The Pristerognathus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the upper Abrahamskraal Formation and lowermost Teekloof Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching not more than 300 metres (980 ft), occur just east of Sutherland through to Beaufort West in the south and Victoria West in the north. Exposures are also found west of Colesberg and south of Graaff-Reinet. The Pristerognathus Assemblage Zone is the third biozone of the Beaufort Group.

<i>Tropidostoma</i> Assemblage Zone

The Tropidostoma Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the lower Teekloof Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 240 metres (790 ft), occur from east of Sutherland through to Beaufort West and Victoria West, to areas south of Graaff-Reinet. Its northernmost exposures occur west/north-west of Colesberg. The Tropidostoma Assemblage Zone is the fourth biozone of the Beaufort Group.

<i>Eodicynodon</i> Assemblage Zone

The Eodicynodon Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the Abrahamskraal Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 620 metres (2,030 ft), occur south-east of Sutherland, north of Prince Albert, and south-east of Beaufort West. The Eodicynodon Assemblage Zone is the lowermost biozone of the Beaufort Group.

In paleontology, biochronology is the correlation in time of biological events using fossils. In its strict sense, it refers to the use of assemblages of fossils that are not tied to stratigraphic sections. Collections of land mammal ages have been defined for every continent except Antarctica, and most are correlated with each other indirectly through known evolutionary lineages. A combination of argon–argon dating and magnetic stratigraphy allows a direct temporal comparison of terrestrial events with climate variations and mass extinctions.

The European Land Mammal Mega Zones are zones in rock layers that have a specific assemblage of fossils (biozones) based on occurrences of fossil assemblages of European land mammals. These biozones cover most of the Cenozoic, with particular focus having been paid to the Neogene and Paleogene systems, the Quaternary has several competing systems. In cases when fossils of mammals are abundant, stratigraphers and paleontologists can use these biozones as a more practical regional alternative to the stages of the official ICS geologic timescale. European Land Mammal Mega Zones are often also confusingly referred to as ages, stages, or intervals.

Conodonts are an extinct class of animals whose feeding apparatuses called teeth or elements are common microfossils found in strata dating from the Stage 10 of the Furongian, the fourth and final series of the Cambrian, to the Rhaetian stage of the Late Triassic. These elements can be used alternatively to or in correlation with other types of fossils in the subfield of the stratigraphy named biostratigraphy.

In biostratigraphy, a subdiscipline of geology, a taxon-range zone is the zone between the highest and the lowest stratigraphic occurrence of a taxon. Taxon-range zones are one of the fundamental biozones used in biostratigraphy and are named after the taxon whose range they describe.

Land vertebrate faunachrons (LVFs) are biochronological units used to correlate and date terrestrial sediments and fossils based on their tetrapod faunas. First formulated on a global scale by Spencer G. Lucas in 1998, LVFs are primarily used within the Triassic Period, though Lucas later designated LVFs for other periods as well. Eight worldwide LVFs are defined for the Triassic. The first two of these LVFs, the Lootsbergian and Nonesian, are based on South African synapsids and faunal assemblage zones estimated to correspond to the Early Triassic. These are followed by the Perovkan and Berdyankian, based on temnospondyl amphibians and Russian assemblages estimated to be from the Middle Triassic. The last four LVFs, the Otischalkian, Adamanian, Revueltian, and Apachean, are based on aetosaur and phytosaur reptiles common in the Late Triassic of the southwestern United States.

<span class="mw-page-title-main">Calcareous nannofossils</span>

Calcareous nannofossils are a class of tiny microfossils that are similar to coccoliths deposited by the modern-day coccolithophores. The nannofossils are a convenient source of geochronological data due to the abundance and rapid evolution of the single-cell organisms forming them (nannoplankton) and ease of handling of the sediment samples. The practical applications of calcareous nannofossils in the areas of biostratigraphy and paleoecology became clear once the deepwater drilling took off in 1968 with the Deep Sea Drilling Project, and they have been extensively studied ever since. Nannofossils provide one of the most important paleontological records with the contiguous length of 220 million years.

References

  1. 1 2 3 4 Nichols, Gary (2009-06-10). Sedimentology and stratigraphy (Second ed.). Wiley-Blackwell. ISBN   978-1-4051-3592-4.
  2. "Biochronology and biochron boundaries: A real dilemma or a false problem? An example based on the Pleistocene large mammalian faunas from Italy". ResearchGate. Retrieved May 10, 2017.
  3. 1 2 3 "Biostratigraphic Units". International Commission on Stratigraphy. Retrieved 11 May 2018.
  4. 1 2 3 4 5 Benton, M. J. (Michael J.) (2009). Introduction to paleobiology and the fossil record. Harper, D. A. T. Chichester, West Sussex, UK: Wiley-Blackwell. ISBN   9781405186469. OCLC   213775572.
  5. Salvador, Amos (2013). International Stratigraphic Guide. Geological Society of America. ISBN   9780813759388.
  6. Betts, Holly C.; Puttick, Mark N.; Clark, James W.; Williams, Tom A.; Donoghue, Philip C. J.; Pisani, Davide (October 2018). "Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin". Nature Ecology & Evolution. 2 (10): 1556–1562. doi:10.1038/s41559-018-0644-x. ISSN   2397-334X. PMC   6152910 . PMID   30127539.
  7. Hatley, Tom; Kappelman, John (December 1980). "Bears, pigs, and Plio-Pleistocene hominids: A case for the exploitation of belowground food resources". Human Ecology. 8 (4): 371–387. doi:10.1007/bf01561000. ISSN   0300-7839.
  8. "Cannabis In Archaeology & Palaeobotany".
  9. Signor, Philip W.; Lipps, Jere H. (1982), "Sampling bias, gradual extinction patterns and catastrophes in the fossil record", Geological Society of America Special Papers, Geological Society of America, pp. 291–296, doi:10.1130/spe190-p291, ISBN   0813721903