Engrailed (gene)

Last updated

engrailed is a homeodomain transcription factor [1] involved in many aspects of multicellular development. First known for its role in arthropod embryological development, working in consort with the Hox genes, engrailed has been found to be important in other areas of development. It has been identified in many bilaterians, including the arthropods, vertebrates, echinoderms, molluscs, nematodes, brachiopods, and polychaetes. [2] It acts as a "selector" gene, conferring a specific identity to defined areas of the body, and co-ordinating the expression of downstream genes. [3]

Contents

Protein

engrailed (en) encodes the homeodomain-containing transcription factor protein Engrailed. Homologous Engrailed proteins are found in a diversity of organisms. When expressed in the ectoderm, engrailed is involved in the production of skeletal material. [4] engrailed, or genes with very similar sequences, are found in all bilaterian animals. [4] engrailed plays a number of crucial roles in brain development across many species, including the determination of the hindbrain/midbrain border and aiding in neuronal axon guidance. [5] This has led to the suggestion that the gene originally served a neurogenetic function in the ancestral bilaterian. [6] It has been observed to express in the repeated units of arthropods, molluscs, onychophora, annelids, echinoderms and amphioxus. [4]

Whilst the gene was traditionally understood to have served a role in segment polarization in the ancestral bilaterian, its association with shell formation in molluscs has produced an alternative hypothesis: that the ancestral role was associated with mineralization. [6] Even where this trait has been secondarily lost (such as in the onychophora) the gene is still expressed, marking the 'ghosts' of the shelly plates that the ancestral onychophora (i.e. lobopods) are thought to have borne. [4]

Arthropods

In the model organism, Drosophila melanogaster , engrailed acts as a segment polarity gene in early embryonic development. It is initially expressed in stages 8–11 of development in 14 isolated bands of cells along the embryo's anterior–posterior axis. The cells expressing engrailed define the anterior-most region of each parasegment. Once proper segments form, engrailed-expressing cells are found in the posterior-most region of each segment. [7]

engrailed homologs have also been found in many other arthropod species, including grasshoppers, milkweed bugs, centipedes, and beetles.

However, the ancestral role of engrailed was not in marking segmentation: it does not fulfill this role in Onychophora. [4]

Molluscs

Although it is not necessary for mineralization to occur, molluscs use engrailed to mark the boundaries of shell-forming fields (this has been demonstrated in cuttlefish, [6] gastropods, [8] [9] bivalves, [4] polyplacophora, [4] and scaphopods) [10] but it has also been co-opted by the cephalopods in the production of evolutionary novelties such as the tentacles, eyes and funnel. [6] This plasticity in gene function is characteristic of genes ancestrally associated with the nervous system, for instance the Hox genes, which are also associated with a wide range of derived organs in the cephalopods, but are involved in shell formation in gastropods. [11] The gene has been sequenced in all groups of shelled molluscs, [2] although for some time it eluded identification in the squid Loligo. [6]

In the scaphopods, engrailed is active in the development of the larval shell, but not the adult conch (a separate entity), suggesting a different evolutionary origin of the mature shell. [10] In cephalopods, engrailed appears to demark the shell field, but is not necessary for shell formation itself (skeletogenesis). [11]

It has been argued that engrailed was only co-opted to skeletal function in molluscs, and that its original function was related to segmentation, not biomineralization; whilst there is no consensus yet on which of these alternatives is correct, a role in biomineralization seems the more parsimonious. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Homeobox</span> DNA pattern affecting anatomy development

A homeobox is a DNA sequence, around 180 base pairs long, that regulates large-scale anatomical features in the early stages of embryonic development. Mutations in a homeobox may change large-scale anatomical features of the full-grown organism.

Segmentation in biology is the division of some animal and plant body plans into a linear series of repetitive segments that may or may not be interconnected to each other. This article focuses on the segmentation of animal body plans, specifically using the examples of the taxa Arthropoda, Chordata, and Annelida. These three groups form segments by using a "growth zone" to direct and define the segments. While all three have a generally segmented body plan and use a growth zone, they use different mechanisms for generating this patterning. Even within these groups, different organisms have different mechanisms for segmenting the body. Segmentation of the body plan is important for allowing free movement and development of certain body parts. It also allows for regeneration in specific individuals.

<span class="mw-page-title-main">Tusk shell</span> Class of elephant tusk shell molluscs

The tusk shells or tooth shells, technically the Scaphopoda, are members of a class of shelled marine mollusc with worldwide distribution, and are the only class of exclusively infaunal marine molluscs. Shells of species within this class range in length 0.5–18 cm (0.20–7.09 in). Members of the order Dentaliida tend to be larger than those of the order Gadilida.

The ParaHox gene cluster is an array of homeobox genes from the Gsx, Xlox (Pdx) and Cdx gene families.

Hox genes, a subset of homeobox genes, are a group of related genes that specify regions of the body plan of an embryo along the head-tail axis of animals. Hox proteins encode and specify the characteristics of 'position', ensuring that the correct structures form in the correct places of the body. For example, Hox genes in insects specify which appendages form on a segment, and Hox genes in vertebrates specify the types and shape of vertebrae that will form. In segmented animals, Hox proteins thus confer segmental or positional identity, but do not form the actual segments themselves.

<span class="mw-page-title-main">T-box transcription factor T</span> Protein-coding gene in the species Homo sapiens

T-box transcription factor T, also known as Brachyury protein, is encoded for in humans by the TBXT gene. Brachyury functions as a transcription factor within the T-box family of genes. Brachyury homologs have been found in all bilaterian animals that have been screened, as well as the freshwater cnidarian Hydra.

<span class="mw-page-title-main">Evolution of molluscs</span> The origin and diversification of molluscs through geologic time

The evolution of the molluscs is the way in which the Mollusca, one of the largest groups of invertebrate animals, evolved. This phylum includes gastropods, bivalves, scaphopods, cephalopods, and several other groups. The fossil record of mollusks is relatively complete, and they are well represented in most fossil-bearing marine strata. Very early organisms which have dubiously been compared to molluscs include Kimberella and Odontogriphus.

mir-10 microRNA precursor family Short non-coding RNA gene

The mir-10 microRNA precursor is a short non-coding RNA gene involved in gene regulation. It is part of an RNA gene family which contains mir-10, mir-51, mir-57, mir-99 and mir-100. mir-10, mir-99 and mir-100 have now been predicted or experimentally confirmed in a wide range of species. miR-51 and miR-57 have currently only been identified in the nematode Caenorhabditis elegans.

<span class="mw-page-title-main">T-box</span> Genes that affect limb and heart development

T-box refers to a group of transcription factors involved in embryonic limb and heart development. Every T-box protein has a relatively large DNA-binding domain, generally comprising about a third of the entire protein that is both necessary and sufficient for sequence-specific DNA binding. All members of the T-box gene family bind to the "T-box", a DNA consensus sequence of TCACACCT.

<span class="mw-page-title-main">Arthropod head problem</span> Dispute concerning the evolution of arthropods

The (pan)arthropod head problem is a long-standing zoological dispute concerning the segmental composition of the heads of the various arthropod groups, and how they are evolutionarily related to each other. While the dispute has historically centered on the exact make-up of the insect head, it has been widened to include other living arthropods, such as chelicerates, myriapods, and crustaceans, as well as fossil forms, such as the many arthropods known from exceptionally preserved Cambrian faunas. While the topic has classically been based on insect embryology, in recent years a great deal of developmental molecular data has become available. Dozens of more or less distinct solutions to the problem, dating back to at least 1897, have been published, including several in the 2000s.

<span class="mw-page-title-main">PDX1</span> A protein involved in the pancreas and duodenum differentiation

PDX1, also known as insulin promoter factor 1, is a transcription factor in the ParaHox gene cluster. In vertebrates, Pdx1 is necessary for pancreatic development, including β-cell maturation, and duodenal differentiation. In humans this protein is encoded by the PDX1 gene, which was formerly known as IPF1. The gene was originally identified in the clawed frog Xenopus laevis and is present widely across the evolutionary diversity of bilaterian animals, although it has been lost in evolution in arthropods and nematodes. Despite the gene name being Pdx1, there is no Pdx2 gene in most animals; single-copy Pdx1 orthologs have been identified in all mammals. Coelacanth and cartilaginous fish are, so far, the only vertebrates shown to have two Pdx genes, Pdx1 and Pdx2.

<span class="mw-page-title-main">HOXA3</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-A3 is a protein that in humans is encoded by the HOXA3 gene.

<span class="mw-page-title-main">Marine invertebrates</span> Marine animals without a vertebrate column

Marine invertebrates are the invertebrates that live in marine habitats. Invertebrate is a blanket term that includes all animals apart from the vertebrate members of the chordate phylum. Invertebrates lack a vertebral column, and some have evolved a shell or a hard exoskeleton. As on land and in the air, marine invertebrates have a large variety of body plans, and have been categorised into over 30 phyla. They make up most of the macroscopic life in the oceans.

<span class="mw-page-title-main">Mollusc shell</span> Exoskeleton of an animal in the phylum Mollusca

The molluscshell is typically a calcareous exoskeleton which encloses, supports and protects the soft parts of an animal in the phylum Mollusca, which includes snails, clams, tusk shells, and several other classes. Not all shelled molluscs live in the sea; many live on the land and in freshwater.

<span class="mw-page-title-main">Mollusca</span> Phylum of invertebrate animals

Mollusca is the second-largest phylum of invertebrate animals, after Arthropoda; members are known as molluscs or mollusks. Around 76,000 extant species of molluscs are recognized. The number of fossil species is estimated between 60,000 and 100,000 additional species. The proportion of undescribed species is very high. Many taxa remain poorly studied.

<span class="mw-page-title-main">Cephalopod eye</span> Visual sensory organs of cephalopod molluscs

Cephalopods, as active marine predators, possess sensory organs specialized for use in aquatic conditions. They have a camera-type eye which consists of an iris, a circular lens, vitreous cavity, pigment cells, and photoreceptor cells that translate light from the light-sensitive retina into nerve signals which travel along the optic nerve to the brain. For the past 140 years, the camera-type cephalopod eye has been compared with the vertebrate eye as an example of convergent evolution, where both types of organisms have independently evolved the camera-eye trait and both share similar functionality. Contention exists on whether this is truly convergent evolution or parallel evolution. Unlike the vertebrate camera eye, the cephalopods' form as invaginations of the body surface, and consequently the cornea lies over the top of the eye as opposed to being a structural part of the eye. Unlike the vertebrate eye, a cephalopod eye is focused through movement, much like the lens of a camera or telescope, rather than changing shape as the lens in the human eye does. The eye is approximately spherical, as is the lens, which is fully internal.

<i>Euperipatoides kanangrensis</i> Species of velvet worm

Euperipatoides kanangrensis is a species of velvet worm of the Peripatopsidae family, described in 1996 from specimens collected in Kanangra-Boyd National Park, New South Wales. This species has 15 pairs of legs in both sexes. It is endemic to Australia. The embryonic development of Euperipatoideskanangrensis has been described. This species is viviparous. This species is used as model organism for the last common ancestor of the Panarthropoda. It resembles fossil Cambrian lobopodians.

<i>Euperipatoides rowelli</i> Species of velvet worm

Euperipatoides rowelli is an ovoviviparous species of velvet worm of the Peripatopsidae family. It is found in New South Wales and the Australian Capital Territory.

<span class="mw-page-title-main">Evo-devo gene toolkit</span>

The evo-devo gene toolkit is the small subset of genes in an organism's genome whose products control the organism's embryonic development. Toolkit genes are central to the synthesis of molecular genetics, palaeontology, evolution and developmental biology in the science of evolutionary developmental biology (evo-devo). Many of them are ancient and highly conserved among animal phyla.

The protocerebrum is the first segment of the panarthropod brain.

References

  1. Brunet, I.; Weinl, C.; Piper, M.; Trembleau, A.; Volovitch, M.; Harris, W.; Prochiantz, A.; Holt, C. (2005). "The transcription factor Engrailed-2 guides retinal axons". Nature. 438 (7064): 94–98. Bibcode:2005Natur.438...94B. doi:10.1038/nature04110. PMC   3785142 . PMID   16267555.
  2. 1 2 Wray, C.; Jacobs, D. K.; Kostriken, R.; Vogler, A. P.; Baker, R.; Desalle, R. (1995). "Homologues of the engrailed gene from five molluscan classes". FEBS Letters. 365 (1): 71–00. doi: 10.1016/0014-5793(95)00372-G . PMID   7774719.
  3. Hidalgo, A. (1994). "Three distinct roles for the engrailed gene in Drosophila wing development". Current Biology. 4 (12): 1087–1098. Bibcode:1994CBio....4.1087H. doi:10.1016/S0960-9822(00)00247-5. PMID   7704572. S2CID   43362521.
  4. 1 2 3 4 5 6 7 Jacobs, D. K.; Wray, C. G.; Wedeen, C. J.; Kostriken, R.; Desalle, R.; Staton, J. L.; Gates, R. D.; Lindberg, D. R. (2000). "Molluscan engrailed expression, serial organization, and shell evolution". Evolution & Development. 2 (6): 340–347. doi:10.1046/j.1525-142x.2000.00077.x. PMID   11256378. S2CID   25274057.
  5. Morgan, R (2006). "Engrailed: Complexity and economy of a multi-functional transcription factor". FEBS Letters. 580 (11): 2531–3. doi: 10.1016/j.febslet.2006.04.053 . PMID   16674951.
  6. 1 2 3 4 5 Baratte; Andouche, A.; Bonnaud, L. (2007). "Engrailed in cephalopods: a key gene related to the emergence of morphological novelties". Development Genes and Evolution. 217 (5): 353–362. doi:10.1007/s00427-007-0147-2. PMID   17394016. S2CID   22241391.
  7. Sanson, B. (2001). "Generating patterns from fields of cells". EMBO Reports. 2 (12): 1083–1088. doi:10.1093/embo-reports/kve255. PMC   1084173 . PMID   11743020.
  8. Moshel, S. M.; Levine, M.; Collier, J. R. (1998). "Shell differentiation and engrailed expression in the Ilyanassa embryo". Development Genes and Evolution. 208 (3): 135–141. doi:10.1007/s004270050164. PMID   9601986. S2CID   3152423.
  9. Nederbragt, A.; Van Loon, A.; Dictus, W. (2002). "Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism". Developmental Biology. 246 (2): 341–355. doi: 10.1006/dbio.2002.0653 . PMID   12051820.
  10. 1 2 Wanninger, A.; Haszprunar, G. (2001). "The expression of an engrailed protein during embryonic shell formation of the tusk-shell, Antalis entalis (Mollusca, Scaphopoda)". Evolution and Development. 3 (5): 312–321. doi:10.1046/j.1525-142X.2001.01034.x. PMID   11710763. S2CID   8936294.
  11. 1 2 Samadi, L.; Steiner, G. (2009). "Involvement of Hox genes in shell morphogenesis in the encapsulated development of a top shell gastropod (Gibbula varia L.)". Development Genes and Evolution. 219 (9–10): 523–530. doi:10.1007/s00427-009-0308-6. PMID   19949812. S2CID   26031156.
  12. Marin, F.; Luquet, G. (2004). "Molluscan shell proteins". Comptes Rendus Palevol. 3 (6–7): 469–492. Bibcode:2004CRPal...3..469M. doi:10.1016/j.crpv.2004.07.009.