Genetic architecture is the underlying genetic basis of a phenotypic trait and its variational properties. [1] Phenotypic variation for quantitative traits is, at the most basic level, the result of the segregation of alleles at quantitative trait loci (QTL). [2] Environmental factors and other external influences can also play a role in phenotypic variation. Genetic architecture is a broad term that can be described for any given individual based on information regarding gene and allele number, the distribution of allelic and mutational effects, and patterns of pleiotropy, dominance, and epistasis. [1]
There are several different experimental views of genetic architecture. Some researchers recognize that the interplay of various genetic mechanisms is incredibly complex, but believe that these mechanisms can be averaged and treated, more or less, like statistical noise. [3] Other researchers claim that each and every gene interaction is significant and that it is necessary to measure and model these individual systemic influences on evolutionary genetics. [1]
Genetic architecture can be studied and applied at many different levels. At the most basic, individual level, genetic architecture describes the genetic basis for differences between individuals, species, and populations. This can include, among other details, how many genes are involved in a specific phenotype and how gene interactions, such as epistasis, influence that phenotype. [1] Line-cross analyses and QTL analyses can be used to study these differences. [2] This is perhaps the most common way that genetic architecture is studied, and though it is useful for supplying pieces of information, it does not generally provide a complete picture of the genetic architecture as a whole.
Genetic architecture can also be used to discuss the evolution of populations. [1] Classical quantitative genetics models, such as that developed by R.A. Fisher, are based on analyses of phenotype in terms of the contributions from different genes and their interactions. [3] Genetic architecture is sometimes studied using a genotype–phenotype map, which graphically depicts the relationship between the genotype and the phenotype. [4]
Genetic architecture is incredibly important for understanding evolutionary theory because it describes phenotypic variation in its underlying genetic terms, and thus it gives us clues about the evolutionary potential of these variations. Therefore, genetic architecture can help us to answer biological questions about speciation, the evolution of sex and recombination, the survival of small populations, inbreeding, understanding diseases, animal and plant breeding, and more. [1]
Evolvability is literally defined as the ability to evolve. In terms of genetics, evolvability is the ability of a genetic system to produce and maintain potentially adaptive genetic variants. There are several aspects of genetic architecture that contribute strongly to the evolvability of a system, including autonomy, mutability, coordination, epistasis, pleiotropy, polygeny, and robustness. [1] [2]
A study published in 2006 used phylogeny to compare the genetic architecture of differing human skin color. In this study, researchers were able to suggest a speculative framework for the evolutionary history underlying current-day phenotypic variation in human skin pigmentation based on the similarities and differences they found in the genotype. [7] Evolutionary history is an important consideration in understanding the genetic basis of any trait, and this study was among the first to utilize these concepts in a paired fashion to determine information about the underlying genetics of a phenotypic trait.
In 2013, a group of researchers used genome-wide association studies (GWAS) and genome-wide interaction studies (GWIS) to determine the risk of congenital heart defects in patients with Down Syndrome. [8] Down Syndrome is a genetic disorder caused by trisomy of human chromosome 21. The current hypothesis regarding congenital heart defect phenotypes in Down Syndrome individuals is that three copies of functional genomic elements on chromosome 21 and genetic variation of chromosome 21 and non-chromosome 21 loci predispose patients to abnormal heart development. This study identified several congenital heart defect risk loci in Down Syndrome individuals, as well as three copy number variation (CNV) regions that may contribute to congenital heart defects in Down Syndrome individuals.
Another study, which was published in 2014, sought to identify the genetic architecture of psychiatric disorders. The researchers in this study suggested that there are a large number of contributing loci that are related to various psychiatric disorders. [9] Additionally, they, like many others, suggested that the genetic risk of psychiatric disorders involves the combined effects of many common variants with small effects - in other words, the small effects of a wide number of variants at specific loci add together to produce a large, combined effect on the overall phenotype of the individual. They also acknowledged the presence of large but rare mutations that have a large effect on phenotype. This study showcases the intricacy of genetic architecture by providing an example of many different SNPs and mutations working together, each with a varying effect, to generate a given phenotype.
Other studies regarding genetic architecture are many and varied, but most use similar types of analyses to provide specific information regarding loci involved in producing a phenotype. A study of the human immune system in 2015 [10] uses the same general concepts to identify several loci involved in the development of the immune system, but, like the other studies outlined here, failed to consider other aspects of genetic architecture, such as environmental influences. Unfortunately, many other aspects of genetic architecture remain difficult to quantify.
Although there are a few studies that seek to explore the other aspects of genetic architecture, there is little ability with current technologies to link all of the pieces together to build a truly comprehensive model of genetic architecture. For example, in 2003, a study of genetic architecture and the environment was able to show an association of social environment with variation in body size in Drosophila melanogaster . [11] However, this study was not able to tie a direct link to specific genes involved in this variation.
An allele, or allelomorph, is a variant of the sequence of nucleotides at a particular location, or locus, on a DNA molecule.
Heredity, also called inheritance or biological inheritance, is the passing on of traits from parents to their offspring; either through asexual reproduction or sexual reproduction, the offspring cells or organisms acquire the genetic information of their parents. Through heredity, variations between individuals can accumulate and cause species to evolve by natural selection. The study of heredity in biology is genetics.
In genetics, the phenotype is the set of observable characteristics or traits of an organism. The term covers the organism's morphology, its developmental processes, its biochemical and physiological properties, its behavior, and the products of behavior. An organism's phenotype results from two basic factors: the expression of an organism's genetic code and the influence of environmental factors. Both factors may interact, further affecting the phenotype. When two or more clearly different phenotypes exist in the same population of a species, the species is called polymorphic. A well-documented example of polymorphism is Labrador Retriever coloring; while the coat color depends on many genes, it is clearly seen in the environment as yellow, black, and brown. Richard Dawkins in 1978 and then again in his 1982 book The Extended Phenotype suggested that one can regard bird nests and other built structures such as caddisfly larva cases and beaver dams as "extended phenotypes".
A phenotypic trait, simply trait, or character state is a distinct variant of a phenotypic characteristic of an organism; it may be either inherited or determined environmentally, but typically occurs as a combination of the two. For example, having eye color is a character of an organism, while blue, brown and hazel versions of eye color are traits. The term trait is generally used in genetics, often to describe phenotypic expression of different combinations of alleles in different individual organisms within a single population, such as the famous purple vs. white flower coloration in Gregor Mendel's pea plants. By contrast, in systematics, the term is character state is employed to describe features that represent fixed diagnostic differences among taxa, such as the absence of tails in great apes, relative to other primate groups.
In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and the second is called recessive. This state of having two different variants of the same gene on each chromosome is originally caused by a mutation in one of the genes, either new or inherited. The terms autosomal dominant or autosomal recessive are used to describe gene variants on non-sex chromosomes (autosomes) and their associated traits, while those on sex chromosomes (allosomes) are termed X-linked dominant, X-linked recessive or Y-linked; these have an inheritance and presentation pattern that depends on the sex of both the parent and the child. Since there is only one copy of the Y chromosome, Y-linked traits cannot be dominant or recessive. Additionally, there are other forms of dominance, such as incomplete dominance, in which a gene variant has a partial effect compared to when it is present on both chromosomes, and co-dominance, in which different variants on each chromosome both show their associated traits.
Penetrance in genetics is the proportion of individuals carrying a particular variant of a gene (genotype) that also expresses an associated trait (phenotype). In medical genetics, the penetrance of a disease-causing mutation is the proportion of individuals with the mutation that exhibit clinical symptoms among all individuals with such mutation. For example: If a mutation in the gene responsible for a particular autosomal dominant disorder has 75% penetrance, then 75% of those with the mutation will go on to develop the disease, showing its phenotype, whereas 25% will not.
Population genetics is a subfield of genetics that deals with genetic differences within and among populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and population structure.
In biology, polymorphism is the occurrence of two or more clearly different morphs or forms, also referred to as alternative phenotypes, in the population of a species. To be classified as such, morphs must occupy the same habitat at the same time and belong to a panmictic population.
A quantitative trait locus (QTL) is a locus that correlates with variation of a quantitative trait in the phenotype of a population of organisms. QTLs are mapped by identifying which molecular markers correlate with an observed trait. This is often an early step in identifying the actual genes that cause the trait variation.
Noonan syndrome (NS) is a genetic disorder that may present with mildly unusual facial features, short height, congenital heart disease, bleeding problems, and skeletal malformations. Facial features include widely spaced eyes, light-colored eyes, low-set ears, a short neck, and a small lower jaw. Heart problems may include pulmonary valve stenosis. The breast bone may either protrude or be sunken, while the spine may be abnormally curved. Intelligence is often normal. Complications of NS can include leukemia.
Pleiotropy occurs when one gene influences two or more seemingly unrelated phenotypic traits. Such a gene that exhibits multiple phenotypic expression is called a pleiotropic gene. Mutation in a pleiotropic gene may have an effect on several traits simultaneously, due to the gene coding for a product used by a myriad of cells or different targets that have the same signaling function.
Human genetics is the study of inheritance as it occurs in human beings. Human genetics encompasses a variety of overlapping fields including: classical genetics, cytogenetics, molecular genetics, biochemical genetics, genomics, population genetics, developmental genetics, clinical genetics, and genetic counseling.
In genetics, expressivity is the degree to which a phenotype is expressed by individuals having a particular genotype. Alternatively, it may refer to the expression of a particular gene by individuals having a certain phenotype. Expressivity is related to the intensity of a given phenotype; it differs from penetrance, which refers to the proportion of individuals with a particular genotype that share the same phenotype.
A polygene is a member of a group of non-epistatic genes that interact additively to influence a phenotypic trait, thus contributing to multiple-gene inheritance, a type of non-Mendelian inheritance, as opposed to single-gene inheritance, which is the core notion of Mendelian inheritance. The term "monozygous" is usually used to refer to a hypothetical gene as it is often difficult to distinguish the effect of an individual gene from the effects of other genes and the environment on a particular phenotype. Advances in statistical methodology and high throughput sequencing are, however, allowing researchers to locate candidate genes for the trait. In the case that such a gene is identified, it is referred to as a quantitative trait locus (QTL). These genes are generally pleiotropic as well. The genes that contribute to type 2 diabetes are thought to be mostly polygenes. In July 2016, scientists reported identifying a set of 355 genes from the last universal common ancestor (LUCA) of all organisms living on Earth.
A phene is an individual genetically determined characteristic or trait which can be possessed by an organism, such as eye colour, height, behavior, tooth shape or any other observable characteristic.
The antagonistic pleiotropy hypothesis was first proposed by George C. Williams in 1957 as an evolutionary explanation for senescence. Pleiotropy is the phenomenon where one gene controls more than one phenotypic trait in an organism. A gene is considered to possess antagonistic pleiotropy if it controls more than one trait, where at least one of these traits is beneficial to the organism's fitness early on in life and at least one is detrimental to the organism's fitness later on due to a decline in the force of natural selection. The theme of G. C. William's idea about antagonistic pleiotropy was that if a gene caused both increased reproduction in early life and aging in later life, then senescence would be adaptive in evolution. For example, one study suggests that since follicular depletion in human females causes both more regular cycles in early life and loss of fertility later in life through menopause, it can be selected for by having its early benefits outweigh its late costs.
A human disease modifier gene is a modifier gene that alters expression of a human gene at another locus that in turn causes a genetic disease. Whereas medical genetics has tended to distinguish between monogenic traits, governed by simple, Mendelian inheritance, and quantitative traits, with cumulative, multifactorial causes, increasing evidence suggests that human diseases exist on a continuous spectrum between the two.
Epistasis is a phenomenon in genetics in which the effect of a gene mutation is dependent on the presence or absence of mutations in one or more other genes, respectively termed modifier genes. In other words, the effect of the mutation is dependent on the genetic background in which it appears. Epistatic mutations therefore have different effects on their own than when they occur together. Originally, the term epistasis specifically meant that the effect of a gene variant is masked by that of different gene.
This glossary of genetics and evolutionary biology is a list of definitions of terms and concepts used in the study of genetics and evolutionary biology, as well as sub-disciplines and related fields, with an emphasis on classical genetics, quantitative genetics, population biology, phylogenetics, speciation, and systematics. Overlapping and related terms can be found in Glossary of cellular and molecular biology, Glossary of ecology, and Glossary of biology.
In evolutionary biology, developmental bias refers to the production against or towards certain ontogenetic trajectories which ultimately influence the direction and outcome of evolutionary change by affecting the rates, magnitudes, directions and limits of trait evolution. Historically, the term was synonymous with developmental constraint, however, the latter has been more recently interpreted as referring solely to the negative role of development in evolution.