Mineralization (soil science)

Last updated

In soil science, mineralization is the decomposition (i.e., oxidation) of the chemical compounds in organic matter, by which the nutrients in those compounds are released in soluble inorganic forms that may be available to plants. [1] [2] Mineralization is the opposite of immobilization.

Contents

Mineralization increases the bioavailability of the nutrients that were in the decomposing organic compounds, most notably (because of their quantities) nitrogen, phosphorus, and sulfur. Whether the decomposition of an organic compound will result in mineralization or immobilization is dependent on its concentration proportionate to that of the carbon in the organic matter.[ citation needed ] As a rule of thumb, if the concentration of a specific element exceeds the needs of the decomposer for biosynthesis or storage, then it will mineralize.

Ratio of carbon to nitrogen

A conceptual view of C cycling and N cycling during organic matter decomposition. The soil microbial population releases exoenzymes (1), which depolymerize the dead organic matter (2). The microbial decomposers assimilate the monomers (3) and either mineralize these into inorganic compounds like carbon dioxide or ammonium (4) or use the monomers for their biosynthetic needs. N mineralization leads to a loss of ammonium to the environment (5), but this process is only relevant if the organic matter has a low C:N ratio. Ammonium from the environment can be immobilized if the dead organic matter has a high C:N ratio and thus provides insufficient N (6). The high microbial N demand leads to a retention of N within the organic matter and thus to a decrease of the C:N ratio over the course of decomposition. Bg-2019-176-f01-web.png
A conceptual view of C cycling and N cycling during organic matter decomposition. The soil microbial population releases exoenzymes (1), which depolymerize the dead organic matter (2). The microbial decomposers assimilate the monomers (3) and either mineralize these into inorganic compounds like carbon dioxide or ammonium (4) or use the monomers for their biosynthetic needs. N mineralization leads to a loss of ammonium to the environment (5), but this process is only relevant if the organic matter has a low C:N ratio. Ammonium from the environment can be immobilized if the dead organic matter has a high C:N ratio and thus provides insufficient N (6). The high microbial N demand leads to a retention of N within the organic matter and thus to a decrease of the C:N ratio over the course of decomposition.

Whether nitrogen mineralizes or immobilizes depends on the carbon-to-nitrogen ratio (C:N ratio) of the decomposing organic matter. [4] In general, organic matter contacting soil has too little nitrogen to support the biosynthetic needs of the decomposing soil microbial population. If the C:N ratio of the decomposing organic matter is above circa 30:1 then the decomposing microbes may absorb nitrogen in mineral form as, e. g., ammonium or nitrates. This mineral nitrogen is said to be immobilized. This may reduce the concentration of inorganic nitrogen in the soil and thus the nitrogen is not available to plants.

As carbon dioxide is released during the generation of energy in decomposition, a process called "catabolism", the C:N ratio of the organic matter decreases. When the C:N ratio is less than circa 25:1, further decomposition causes mineralization by the simultaneous release of inorganic nitrogen as ammonium. When the decomposition of organic matter is complete, the mineralized nitrogen therefrom adds to that already present in the soil and therefore increases the total mineral nitrogen in the soil.

See also

Related Research Articles

<span class="mw-page-title-main">Humus</span> Organic matter in soils resulting from decay of plant and animal materials

In classical soil science, humus is the dark organic matter in soil that is formed by the decomposition of plant and animal matter. It is a kind of soil organic matter. It is rich in nutrients and retains moisture in the soil. Humus is the Latin word for "earth" or "ground".

<span class="mw-page-title-main">Fertilizer</span> Substance added to soils to supply plant nutrients for a better growth

A fertilizer or fertiliser is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from liming materials or other non-nutrient soil amendments. Many sources of fertilizer exist, both natural and industrially produced. For most modern agricultural practices, fertilization focuses on three main macro nutrients: nitrogen (N), phosphorus (P), and potassium (K) with occasional addition of supplements like rock flour for micronutrients. Farmers apply these fertilizers in a variety of ways: through dry or pelletized or liquid application processes, using large agricultural equipment or hand-tool methods.

<span class="mw-page-title-main">Fen</span> Type of wetland fed by mineral-rich ground or surface water

A fen is a type of peat-accumulating wetland fed by mineral-rich ground or surface water. It is one of the main types of wetlands along with marshes, swamps, and bogs. Bogs and fens, both peat-forming ecosystems, are also known as mires. The unique water chemistry of fens is a result of the ground or surface water input. Typically, this input results in higher mineral concentrations and a more basic pH than found in bogs. As peat accumulates in a fen, groundwater input can be reduced or cut off, making the fen ombrotrophic rather than minerotrophic. In this way, fens can become more acidic and transition to bogs over time.

<span class="mw-page-title-main">Soil fertility</span> The ability of a soil to sustain agricultural plant growth

Soil fertility refers to the ability of soil to sustain agricultural plant growth, i.e. to provide plant habitat and result in sustained and consistent yields of high quality. It also refers to the soil's ability to supply plant/crop nutrients in the right quantities and qualities over a sustained period of time. A fertile soil has the following properties:

<span class="mw-page-title-main">Ecosystem ecology</span> Study of living and non-living components of ecosystems and their interactions

Ecosystem ecology is the integrated study of living (biotic) and non-living (abiotic) components of ecosystems and their interactions within an ecosystem framework. This science examines how ecosystems work and relates this to their components such as chemicals, bedrock, soil, plants, and animals.

In biogeochemistry, remineralisation refers to the breakdown or transformation of organic matter into its simplest inorganic forms. These transformations form a crucial link within ecosystems as they are responsible for liberating the energy stored in organic molecules and recycling matter within the system to be reused as nutrients by other organisms.

<span class="mw-page-title-main">Dissolved organic carbon</span> Organic carbon classification

Dissolved organic carbon (DOC) is the fraction of organic carbon operationally defined as that which can pass through a filter with a pore size typically between 0.22 and 0.7 micrometers. The fraction remaining on the filter is called particulate organic carbon (POC).

<span class="mw-page-title-main">Soil biology</span> Study of living things in soil

Soil biology is the study of microbial and faunal activity and ecology in soil. Soil life, soil biota, soil fauna, or edaphon is a collective term that encompasses all organisms that spend a significant portion of their life cycle within a soil profile, or at the soil-litter interface. These organisms include earthworms, nematodes, protozoa, fungi, bacteria, different arthropods, as well as some reptiles, and species of burrowing mammals like gophers, moles and prairie dogs. Soil biology plays a vital role in determining many soil characteristics. The decomposition of organic matter by soil organisms has an immense influence on soil fertility, plant growth, soil structure, and carbon storage. As a relatively new science, much remains unknown about soil biology and its effect on soil ecosystems.

Soil chemistry is the study of the chemical characteristics of soil. Soil chemistry is affected by mineral composition, organic matter and environmental factors. In the early 1870s a consulting chemist to the Royal Agricultural Society in England, named J. Thomas Way, performed many experiments on how soils exchange ions, and is considered the father of soil chemistry. Other scientists who contributed to this branch of ecology include Edmund Ruffin, and Linus Pauling.

<span class="mw-page-title-main">Carbon-to-nitrogen ratio</span>

A carbon-to-nitrogen ratio is a ratio of the mass of carbon to the mass of nitrogen in organic residues. It can, amongst other things, be used in analysing sediments and soil including soil organic matter and soil amendments such as compost.

<span class="mw-page-title-main">Immobilization (soil science)</span>

Immobilization in soil science is the conversion of inorganic compounds to organic compounds by microorganisms or plants by which the compounds become inaccessible to plants. Immobilization is the opposite of mineralization. In immobilization, inorganic nutrients are taken up by soil microbes and become unavailable for plant uptake. Immobilization is therefore a biological process controlled by bacteria that consume inorganic nitrogen and form amino acids and biological macromolecules. Immobilization and mineralization are continuous processes that occur concurrently whereby nitrogen of the decomposing system is steadily transformed from an inorganic to an organic state by immobilization and from an organic to an inorganic state by decay and mineralization.

<span class="mw-page-title-main">Microbial loop</span> Trophic pathway in marine microbial ecosystems

The microbial loop describes a trophic pathway where, in aquatic systems, dissolved organic carbon (DOC) is returned to higher trophic levels via its incorporation into bacterial biomass, and then coupled with the classic food chain formed by phytoplankton-zooplankton-nekton. In soil systems, the microbial loop refers to soil carbon. The term microbial loop was coined by Farooq Azam, Tom Fenchel et al. in 1983 to include the role played by bacteria in the carbon and nutrient cycles of the marine environment.

<span class="mw-page-title-main">Phosphorus cycle</span> Biogeochemical movement

The phosphorus cycle is the biogeochemical cycle that describes the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based compounds are usually solids at the typical ranges of temperature and pressure found on Earth. The production of phosphine gas occurs in only specialized, local conditions. Therefore, the phosphorus cycle should be viewed from whole Earth system and then specifically focused on the cycle in terrestrial and aquatic systems.

<span class="mw-page-title-main">Human impact on the nitrogen cycle</span>

Human impact on the nitrogen cycle is diverse. Agricultural and industrial nitrogen (N) inputs to the environment currently exceed inputs from natural N fixation. As a consequence of anthropogenic inputs, the global nitrogen cycle (Fig. 1) has been significantly altered over the past century. Global atmospheric nitrous oxide (N2O) mole fractions have increased from a pre-industrial value of ~270 nmol/mol to ~319 nmol/mol in 2005. Human activities account for over one-third of N2O emissions, most of which are due to the agricultural sector. This article is intended to give a brief review of the history of anthropogenic N inputs, and reported impacts of nitrogen inputs on selected terrestrial and aquatic ecosystems.

<span class="mw-page-title-main">Soil respiration</span> Chemical process produced by soil and the organisms within it

Soil respiration refers to the production of carbon dioxide when soil organisms respire. This includes respiration of plant roots, the rhizosphere, microbes and fauna.

Soil organic matter (SOM) is the organic matter component of soil, consisting of plant and animal detritus at various stages of decomposition, cells and tissues of soil microbes, and substances that soil microbes synthesize. SOM provides numerous benefits to the physical and chemical properties of soil and its capacity to provide regulatory ecosystem services. SOM is especially critical for soil functions and quality.

<span class="mw-page-title-main">Soil regeneration</span>

Soil regeneration, as a particular form of ecological regeneration within the field of restoration ecology, is creating new soil and rejuvenating soil health by: minimizing the loss of topsoil, retaining more carbon than is depleted, boosting biodiversity, and maintaining proper water and nutrient cycling. This has many benefits, such as: soil sequestration of carbon in response to a growing threat of climate change, a reduced risk of soil erosion, and increased overall soil resilience.

Some types of lichen are able to fix nitrogen from the atmosphere. This process relies on the presence of cyanobacteria as a partner species within the lichen. The ability to fix nitrogen enables lichen to live in nutrient-poor environments. Lichen can also extract nitrogen from the rocks on which they grow.

<span class="mw-page-title-main">Viral shunt</span>

The viral shunt is a mechanism that prevents marine microbial particulate organic matter (POM) from migrating up trophic levels by recycling them into dissolved organic matter (DOM), which can be readily taken up by microorganisms. The DOM recycled by the viral shunt pathway is comparable to the amount generated by the other main sources of marine DOM.

Seventeen elements or nutrients are essential for plant growth and reproduction. They are carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg), iron (Fe), boron (B), manganese (Mn), copper (Cu), zinc (Zn), molybdenum (Mo), nickel (Ni) and chlorine (Cl). Nutrients required for plants to complete their life cycle are considered essential nutrients. Nutrients that enhance the growth of plants but are not necessary to complete the plant's life cycle are considered non-essential, although some of them, such as silicon (Si), have been shown to improve nutrent availability, hence the use of stinging nettle and horsetail macerations in Biodynamic agriculture. With the exception of carbon, hydrogen and oxygen, which are supplied by carbon dioxide and water, and nitrogen, provided through nitrogen fixation, the nutrients derive originally from the mineral component of the soil. The Law of the Minimum expresses that when the available form of a nutrient is not in enough proportion in the soil solution, then other nutrients cannot be taken up at an optimum rate by a plant. A particular nutrient ratio of the soil solution is thus mandatory for optimizing plant growth, a value which might differ from nutrient ratios calculated from plant composition.

References

  1. White, Robert E. (October 2005). Principles and Practice of Soil Science: The Soil as a Natural Resource (4th ed.). Blackwell Publishing. ISBN   0-632-06455-2. 384 pages
  2. Beare, M. H.; Hendrix, P. F.; Cabrera, M. L.; Coleman, D. C. (1994). "Aggregate-Protected and Unprotected Organic Matter Pools in Conventional- and No-Tillage Soils". Soil Science Society of America Journal . Free PDF download. 58 (3): 787. Bibcode:1994SSASJ..58..787B. doi:10.2136/sssaj1994.03615995005800030021x . Retrieved 13 July 2016.
  3. Reuter, Hendrik; Gensel, Julia; Elvert, Marcus; Zak, Dominik (2020). "Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine". Biogeosciences . 17 (2): 499–514. Bibcode:2020BGeo...17..499R. doi: 10.5194/bg-17-499-2020 .
  4. R.G. McLaren & K. Cameron Soil Science: Sustainable production and environmental protection (2nd edition), Oxford University Press, 1996, ISBN   0-19-558345-0