Biointerface

Last updated

A biointerface is the region of contact between a biomolecule, cell, biological tissue or living organism or organic material considered living with another biomaterial or inorganic/organic material. The motivation for biointerface science stems from the urgent need to increase the understanding of interactions between biomolecules and surfaces. The behavior of complex macromolecular systems at materials interfaces are important in the fields of biology, biotechnology, diagnostics, and medicine. Biointerface science is a multidisciplinary field in which biochemists who synthesize novel classes of biomolecules (peptide nucleic acids, peptidomimetics, aptamers, ribozymes, and engineered proteins) cooperate with scientists who have developed the tools to position biomolecules with molecular precision (proximal probe methods, nano-and micro contact methods, e-beam and X-ray lithography, and bottom up self-assembly methods), scientists who have developed new spectroscopic techniques to interrogate these molecules at the solid-liquid interface, and people who integrate these into functional devices (applied physicists, analytical chemists and bioengineers). [1] Well-designed biointerfaces would facilitate desirable interactions by providing optimized surfaces where biological matter can interact with other inorganic or organic materials, such as by promoting cell and tissue adhesion onto a surface. [2]

Contents

Topics of interest include, but are not limited to:

Related fields for biointerfaces are biomineralization, biosensors, medical implants, and so forth.

Nanostructure interfaces

Nanotechnology is a rapidly growing field that has allowed for the creation of many different possibilities for creating biointerfaces. Nanostructures that are commonly used for biointerfaces include: metal nanomaterials such as gold and silver nanoparticles, semiconductor materials like silicon nanowires, carbon nanomaterials, and nanoporous materials. [3] Due to the many properties unique to each nanomaterial, like size, conductivity, and construction, various applications have been achieved. For example, gold nanoparticles are often functionalized in order to act as drug delivery agents for cancers because their size allows them to collect at tumor sites passively. [4] Also as an example, the use of silicon nanowires in nanoporous materials to create scaffolds for synthetic tissues allows for monitoring of electrical activity and electrical stimulation of cells as a result of the photoelectric properties of the silicon. [5] The orientation of biomolecules on the interface can also be controlled through the modulation of parameters like pH, temperature and electrical field. For example, DNA grafted onto gold electrodes can be made to come closer to the electrode surface on application of positive electrode potential and as explained by Rant et al., [6] this can be used to create smart interfaces for biomolecular detection. Likewise, Xiao Ma and others, [7] have discussed the electrical control on the binding/unbinding of thrombin from aptamers immobilized on electrodes. They showed that on application of certain positive potentials, the thrombin gets separated [8] from the biointerface.

Silicon nanowire interfaces

Silicon is a common material used in the technology industry due to its abundance as well as its properties as a semiconductor. However, in the bulk form used for computer chips and the like are not conducive to biointerfaces. For these purposes silicon nanowires (SiNWs) are often used. Various methods of growth and composition of SiNWs, such as etching, chemical vapor deposition, and doping, allow for the properties of the SiNWs to be customized for unique applications. [9] One example of these unique uses is that SiNWs can be used as individual wires to be used for intracellular probes or extracellular devices or the SiNWs can be manipulated into larger macro structures. These structures can be manipulated into flexible, 3D, macropourus structures (like the scaffolds mentioned above) that can be used for creating synthetic extracellular matrices. In the case of Tian et al., cardiomyocytes were grown on these structures as a way to create a synthetic tissue structure that could be used to monitor the electrical activity of the cells on the scaffold. [5] The device created by Tian et al. takes advantage of the fact that SiNWs are field-effect transistor (FET)-based devices. FET devices respond to electric potential charges at the surface of the device, or in this case the surface of the SiNW. Being a FET device can also be taken advantage of when using single SiNWs as biosensing devices. SiNW sensors are nanowires that contain specific receptors on their surface that when bound to their respective antigens will cause changes in conductivity. These sensors have the ability to be inserted into cells with minimal invasiveness making them in some ways preferable to traditional biosensors like fluorescent dyes, as well as other nanoparticles which require target labelling. [10]

Related Research Articles

<span class="mw-page-title-main">Nanotechnology</span> Field of applied science addressing the control of matter on atomic and (supra)molecular scales

Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defined nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter which occur below the given size threshold. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size.

Nanomedicine is the medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology such as biological machines. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials.

A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre. More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length. At these scales, quantum mechanical effects are important—which coined the term "quantum wires".

A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The sensitive biological element, e.g. tissue, microorganisms, organelles, cell receptors, enzymes, antibodies, nucleic acids, etc., is a biologically derived material or biomimetic component that interacts with, binds with, or recognizes the analyte under study. The biologically sensitive elements can also be created by biological engineering. The transducer or the detector element, which transforms one signal into another one, works in a physicochemical way: optical, piezoelectric, electrochemical, electrochemiluminescence etc., resulting from the interaction of the analyte with the biological element, to easily measure and quantify. The biosensor reader device connects with the associated electronics or signal processors that are primarily responsible for the display of the results in a user-friendly way. This sometimes accounts for the most expensive part of the sensor device, however it is possible to generate a user friendly display that includes transducer and sensitive element. The readers are usually custom-designed and manufactured to suit the different working principles of biosensors.

Nanosensors are nanoscale devices that measure physical quantities and convert these to signals that can be detected and analyzed. There are several ways proposed today to make nanosensors; these include top-down lithography, bottom-up assembly, and molecular self-assembly. There are different types of nanosensors in the market and in development for various applications, most notably in defense, environmental, and healthcare industries. These sensors share the same basic workflow: a selective binding of an analyte, signal generation from the interaction of the nanosensor with the bio-element, and processing of the signal into useful metrics.

<span class="mw-page-title-main">ISFET</span>

An ion-sensitive field-effect transistor (ISFET) is a field-effect transistor used for measuring ion concentrations in solution; when the ion concentration (such as H+, see pH scale) changes, the current through the transistor will change accordingly. Here, the solution is used as the gate electrode. A voltage between substrate and oxide surfaces arises due to an ion sheath. It is a special type of MOSFET (metal-oxide-semiconductor field-effect transistor), and shares the same basic structure, but with the metal gate replaced by an ion-sensitive membrane, electrolyte solution and reference electrode. Invented in 1970, the ISFET was the first biosensor FET (BioFET).

<span class="mw-page-title-main">Nanobiotechnology</span> Intersection of nanotechnology and biology

Nanobiotechnology, bionanotechnology, and nanobiology are terms that refer to the intersection of nanotechnology and biology. Given that the subject is one that has only emerged very recently, bionanotechnology and nanobiotechnology serve as blanket terms for various related technologies.

Hybrid solar cells combine advantages of both organic and inorganic semiconductors. Hybrid photovoltaics have organic materials that consist of conjugated polymers that absorb light as the donor and transport holes. Inorganic materials in hybrid cells are used as the acceptor and electron transporter in the structure. The hybrid photovoltaic devices have a potential for not only low-cost by roll-to-roll processing but also for scalable solar power conversion.

Nanochemistry is the combination of chemistry and nano science. Nanochemistry is associated with synthesis of building blocks which are dependent on size, surface, shape and defect properties. Nanochemistry is being used in chemical, materials and physical, science as well as engineering, biological and medical applications. Nanochemistry and other nanoscience fields have the same core concepts but the usages of those concepts are different.

Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively. Some of these candidates include: hybrid molecular/semiconductor electronics, one-dimensional nanotubes/nanowires or advanced molecular electronics.

<span class="mw-page-title-main">Nanobatteries</span> Type of battery

Nanobatteries are fabricated batteries employing technology at the nanoscale, particles that measure less than 100 nanometers or 10−7 meters. These batteries may be nano in size or may use nanotechnology in a macro scale battery. Nanoscale batteries can be combined to function as a macrobattery such as within a nanopore battery.

Polymer nanocomposites (PNC) consist of a polymer or copolymer having nanoparticles or nanofillers dispersed in the polymer matrix. These may be of different shape, but at least one dimension must be in the range of 1–50 nm. These PNC's belong to the category of multi-phase systems that consume nearly 95% of plastics production. These systems require controlled mixing/compounding, stabilization of the achieved dispersion, orientation of the dispersed phase, and the compounding strategies for all MPS, including PNC, are similar. Alternatively, polymer can be infiltrated into 1D, 2D, 3D preform creating high content polymer nanocomposites.

A nanowire battery uses nanowires to increase the surface area of one or both of its electrodes. Some designs, variations of the lithium-ion battery have been announced, although none are commercially available. All of the concepts replace the traditional graphite anode and could improve battery performance.

<span class="mw-page-title-main">Silicon nanotube</span>

Silicon nanotubes are nanoparticles which create a tube-like structure from silicon atoms. As with silicon nanowires, they are technologically important due to their unusual physical properties, which differ fundamentally to those of bulk silicon. The first reports on silicon nanotubes appeared around the year 2000.

A biotransducer is the recognition-transduction component of a biosensor system. It consists of two intimately coupled parts; a bio-recognition layer and a physicochemical transducer, which acting together converts a biochemical signal to an electronic or optical signal. The bio-recognition layer typically contains an enzyme or another binding protein such as antibody. However, oligonucleotide sequences, sub-cellular fragments such as organelles and receptor carrying fragments, single whole cells, small numbers of cells on synthetic scaffolds, or thin slices of animal or plant tissues, may also comprise the bio-recognition layer. It gives the biosensor selectivity and specificity. The physicochemical transducer is typically in intimate and controlled contact with the recognition layer. As a result of the presence and biochemical action of the analyte, a physico-chemical change is produced within the biorecognition layer that is measured by the physicochemical transducer producing a signal that is proportionate to the concentration of the analyte. The physicochemical transducer may be electrochemical, optical, electronic, gravimetric, pyroelectric or piezoelectric. Based on the type of biotransducer, biosensors can be classified as shown to the right.

Potential graphene applications include lightweight, thin, and flexible electric/photonics circuits, solar cells, and various medical, chemical and industrial processes enhanced or enabled by the use of new graphene materials.

<span class="mw-page-title-main">Bio-FET</span>

A field-effect transistor-based biosensor, also known as a biosensor field-effect transistor, field-effect biosensor (FEB), or biosensor MOSFET, is a field-effect transistor that is gated by changes in the surface potential induced by the binding of molecules. When charged molecules, such as biomolecules, bind to the FET gate, which is usually a dielectric material, they can change the charge distribution of the underlying semiconductor material resulting in a change in conductance of the FET channel. A Bio-FET consists of two main compartments: one is the biological recognition element and the other is the field-effect transistor. The BioFET structure is largely based on the ion-sensitive field-effect transistor (ISFET), a type of metal-oxide-semiconductor field-effect transistor (MOSFET) where the metal gate is replaced by an ion-sensitive membrane, electrolyte solution and reference electrode.

Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications in lithium ion batteries, thermoelectrics and sensors. Initial synthesis of SiNWs is often accompanied by thermal oxidation steps to yield structures of accurately tailored size and morphology.

<span class="mw-page-title-main">Electrochemical aptamer-based biosensors</span>

An electrochemical aptamer-based (E-AB) biosensor has the ability to generate an electrochemical signal in response to specific target binding in vivo The signal is measured by a change in Faradaic current passed through an electrode. E-AB sensors are advantageous over previously reported aptamer-based sensors, such as fluorescence generating aptamers, due to their ability to detect target binding in vivo with real-time measurements. An E-AB sensor is composed of a three-electrode cell: an interrogating electrode, a reference electrode, and a counter electrode. A signal is generated within the electrochemical cell then measured and analyzed by a potentiostat. There are several biochemical and electrochemical parameters to optimize signal gain for E-AB biosensors. The density packing of DNA or RNA aptamers, the ACV frequency administered by the potentiostat, and the chemistry of the SAM are all factors that determine signal gain as well as the signal to noise ratio of target binding. E-AB biosensors provide a promising mechanism for in-situ sensing and feedback-controlled drug administration.

Nanoneuroscience is an interdisciplinary field that integrates nanotechnology and neuroscience. One of its main goals is to gain a detailed understanding of how the nervous system operates and, thus, how neurons organize themselves in the brain. Consequently, creating drugs and devices that are able to cross the blood brain barrier (BBB) are essential to allow for detailed imaging and diagnoses. The blood brain barrier functions as a highly specialized semipermeable membrane surrounding the brain, preventing harmful molecules that may be dissolved in the circulation blood from entering the central nervous system.

References

  1. Biointerfaces, Editors: Dietmar Hutmacher, Wojciech Chrzanowski, Royal Society of Chemistry, Cambridge 2015, https://pubs.rsc.org/en/content/ebook/978-1-78262-845-3
  2. Nguyen, John V. L.; Ghafar-Zadeh, Ebrahim (2020-12-11). "Biointerface Materials for Cellular Adhesion: Recent Progress and Future Prospects". Actuators. 9 (4): 137. doi: 10.3390/act9040137 . ISSN   2076-0825.
  3. Chen, Da; Wang, Geng; Li, Jinghong (2007). "Interfacial Bioelectrochemistry: Fabrication, Properties and Applications of Functional Nanostructured Biointerfaces". The Journal of Physical Chemistry C. 111 (6): 2351–2367. doi:10.1021/jp065099w.
  4. Dreaden, Erik C; Austin, Lauren A; Mackey, Megan A; El-Sayed, Mostafa A (2017-01-26). "Size matters: gold nanoparticles in targeted cancer drug delivery". Therapeutic Delivery. 3 (4): 457–478. doi:10.4155/tde.12.21. ISSN   2041-5990. PMC   3596176 . PMID   22834077.
  5. 1 2 Tian, Bozhi; Liu, Jia; Dvir, Tal; Jin, Lihua; Tsui, Jonathan H.; Qing, Quan; Suo, Zhigang; Langer, Robert; Kohane, Daniel S. (2012-11-01). "Macroporous nanowire nanoelectronic scaffolds for synthetic tissues". Nature Materials. 11 (11): 986–994. Bibcode:2012NatMa..11..986T. doi:10.1038/nmat3404. ISSN   1476-1122. PMC   3623694 . PMID   22922448.
  6. Rant, U.; Arinaga, K.; Scherer, S.; Pringsheim, E.; Fujita, S.; Yokoyama, N.; Tornow, M.; Abstreiter, G. (2007). "Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets". Proceedings of the National Academy of Sciences. 104 (44): 17364–17369. Bibcode:2007PNAS..10417364R. doi: 10.1073/pnas.0703974104 . PMC   2077262 . PMID   17951434.
  7. Ma, Xiao; Gosai, Agnivo; Shrotriya, Pranav (2020). "Resolving electrical stimulus triggered molecular binding and force modulation upon thrombin-aptamer biointerface". Journal of Colloid and Interface Science. 559: 1–12. Bibcode:2020JCIS..559....1M. doi:10.1016/j.jcis.2019.09.080. PMID   31605780. S2CID   203938092.
  8. Gosai, Agnivo; Ma, Xiao; Balasubramanian, Ganesh; Shrotriya, Pranav (2016). "Electrical Stimulus Controlled Binding/Unbinding of Human Thrombin-Aptamer Complex". Scientific Reports. 6: 37449. Bibcode:2016NatSR...637449G. doi:10.1038/srep37449. PMC   5118750 . PMID   27874042.
  9. Coffer, J.L. (2014). "Overview of semiconducting silicon nanowires for biomedical applications". Semiconducting Silicon Nanowires for Biomedical Applications. pp. 3–7. doi:10.1533/9780857097712.1.3. ISBN   9780857097668.
  10. Zhang, Guo-Jun; Ning, Yong (2012-10-24). "Silicon nanowire biosensor and its applications in disease diagnostics: A review". Analytica Chimica Acta. 749: 1–15. doi:10.1016/j.aca.2012.08.035. PMID   23036462.