X-ray lithography

Last updated
XRL Currents.svg

X-ray lithography is a process used in semiconductor device fabrication industry to selectively remove parts of a thin film of photoresist. It uses X-rays to transfer a geometric pattern from a mask to a light-sensitive chemical photoresist, or simply "resist," on the substrate to reach extremely small topological size of a feature. A series of chemical treatments then engraves the produced pattern into the material underneath the photoresist.

Contents

It's less commonly used in commercial production due to prohibitively high costs of materials (such as gold used for X-rays blocking) etc. [1]

Mechanisms

X-ray lithography originated as a candidate for next-generation lithography for the semiconductor industry , with batches of microprocessors successfully produced. Having short wavelengths (below 1 nm), X-rays overcome the diffraction limits of optical lithography, allowing smaller feature sizes. If the X-ray source isn't collimated, as with a synchrotron radiation, elementary collimating mirrors or diffractive lenses are used in the place of the refractive lenses used in optics. The X-rays illuminate a mask placed in proximity of a resist-coated wafer. The X-rays are broadband, typically from a compact synchrotron radiation source, allowing rapid exposure. Deep X-ray lithography (DXRL) uses yet shorter wavelengths on the order of 0.1 nm and modified procedures such as the LIGA process, to fabricate deep and even three-dimensional structures.

The mask consists of an X-ray absorber, typically of gold or compounds of tantalum or tungsten, on a membrane that is transparent to X-rays, typically of silicon carbide or diamond. The pattern on the mask is written by direct-write electron beam lithography onto a resist that is developed by conventional semiconductor processes. The membrane can be stretched for overlay accuracy.

Most X-ray lithography demonstrations have been performed by copying with image fidelity (without magnification) on the line of fuzzy contrast as illustrated in the figure. However, with the increasing need for high resolution, X-ray lithography is now performed on what is called the "sweet spot", using local "demagnification by bias". Dense structures are developed by multiple exposures with translation. The advantages of using 3x demagnification include, the mask is more easily fabricated, the mask to wafer gap is increased, and the contrast is higher. The technique is extensible to dense 15 nm prints.

X-rays generate secondary electrons as in the cases of extreme ultraviolet lithography and electron beam lithography. While the fine pattern definition is due principally to secondaries from Auger electrons with a short path length, the primary electrons will sensitize the resist over a larger region than the X-ray exposure. While this does not affect the pattern pitch resolution, which is determined by wavelength and gap, the image exposure contrast (max-min)/(max+min) is reduced because the pitch is on the order of the primary photo-electron range. The sidewall roughness and slopes are influenced by these secondary electrons as they can travel few micrometers in the area under the absorber, depending on exposure X-ray energy. Several prints at about 30 nm have been published.

Another manifestation of the photoelectron effect is exposure to X-ray generated electrons from thick gold films used for making daughter masks. Simulations suggest that photoelectron generation from the gold substrate may affect dissolution rates.

Photoelectrons, secondary electrons and Auger electrons

Secondary electrons have energies of 25 eV or less, and can be generated by any ionizing radiation (VUV, EUV, X-rays, ions and other electrons). Auger electrons have energies of hundreds of electronvolts. The secondaries (generated by and outnumbering the Auger and primary photoelectrons) are the main agents for resist exposure.[ citation needed ]

The relative ranges of photoelectron primaries and Auger electrons depend on their respective energies. These energies depend on the energy of incident radiation and on the composition of the resist. There is considerable room for optimum selection (reference 3 of the article). When Auger electrons have lower energies than primary photoelectrons, they have shorter ranges. Both decay to secondaries which interact with chemical bonds. When secondary energies are too low, they fail to break the chemical bonds and cease to affect print resolution. Experiments prove that the combined range is less than 20 nm. On the other hand, the secondaries follow a different trend below ≈30 eV: the lower the energy, the longer the mean free path though they are not then able to affect resist development.[ citation needed ]

As they decay, primary photo-electrons and Auger electrons eventually become physically indistinguishable (as in Fermi–Dirac statistics) from secondary electrons. The range of low-energy secondary electrons is sometimes larger than the range of primary photo-electrons or of Auger electrons. What matters for X-ray lithography is the effective range of electrons that have sufficient energy to make or break chemical bonds in negative or positive resists.[ citation needed ]

Lithographic electron range

X-rays do not charge. The relatively large mean free path (~20 nm) of secondary electrons hinders resolution control at nanometer scale. In particular, electron beam lithography suffers negative charging by incident electrons and consequent beam spread which limits resolution. It is difficult therefore to isolate the effective range of secondaries which may be less than 1 nm.

The combined electron mean free path results in an image blur, which is usually modeled as a Gaussian function (where σ = blur) that is convolved with the expected image. As the desired resolution approaches the blur, the dose image becomes broader than the aerial image of the incident X-rays. The blur that matters is the latent image that describes the making or breaking of bonds during the exposure of resist. The developed image is the final relief image produced by the selected high contrast development process on the latent image.

The range of primary, Auger, secondary and ultralow energy higher-order generation electrons which print (as STM studies proved) can be large (tens of nm) or small (nm), according to various cited publications. Because this range is not a fixed number, it is hard to quantify. Line edge roughness is aggravated by the associated uncertainty. Line edge roughness is supposedly statistical in origin and only indirectly dependent on mean range. Under commonly practiced lithography conditions, the various electron ranges can be controlled and utilized.

Charging

X-rays carry no charge, but at the energies involved, Auger decay of ionized species in a specimen is more probable than radiative decay. High-energy radiation exceeding the ionization potential also generates free electrons which are negligible compared to those produced by electron beams which are charged. Charging of the sample following ionization is an extremely weak possibility when it cannot be guaranteed the ionized electrons leaving the surface or remaining in the sample are adequately balanced from other sources in time. The energy transfer to electrons as a result of ionizing radiation results in separated positive and negative charges which quickly recombine due partly to the long range of the Coulomb force. Insulating films like gate oxides and resists have been observed to charge to a positive or negative potential under electron-beam irradiation. Insulating films are eventually neutralized locally by space charge (electrons entering and exiting the surface) at the resist-vacuum interface and Fowler-Nordheim injection from the substrate. The range of the electrons in the film can be affected by the local electric field. The situation is complicated by the presence of holes (positively charged electron vacancies) which are generated along with the secondary electrons, and which may be expected to follow them around. As neutralization proceeds, any initial charge concentration effectively starts to spread out. The final chemical state of the film is reached after neutralization is completed, after all the electrons have eventually slowed down. Usually, excepting X-ray steppers, charging can be further controlled by flood gun or resist thickness or charge dissipation layer.

See also

Notes

  1. ^ Y. Vladimirsky, "Lithography" in Vacuum Ultraviolet Spectroscopy II Eds. J.A.Samson and D.L.Ederer, Ch 10 pp 205–223, Academic Press (1998).
  2. ^ Vladimirsky, Yuli; Bourdillon, Antony; Vladimirsky, Olga; Jiang, Wenlong; Leonard, Quinn (1999). "Demagnification in proximity x-ray lithography and extensibility to 25 nm by optimizing Fresnel diffraction". Journal of Physics D: Applied Physics. 32 (22): 114. Bibcode:1999JPhD...32..114V. doi:10.1088/0022-3727/32/22/102.
  3. ^ Antony Bourdillon and Yuli Vladimirsky, X-ray Lithography on the Sweet Spot, UHRL, San Jose, (2006) ISBN   978-0-9789839-0-1
  4. ^ Vora, K D; Shew, B Y; Harvey, E C; Hayes, J P; Peele, A G (2008). "Sidewall slopes of SU-8 HARMST using deep x-ray lithography". Journal of Micromechanics and Microengineering. 18 (3): 035037. Bibcode:2008JMiMi..18c5037V. doi:10.1088/0960-1317/18/3/035037.
  5. ^ Early, K; Schattenburg, M; Smith, H (1990). "Absence of resolution degradation in X-ray lithography for λ from 4.5nm to 0.83nm". Microelectronic Engineering. 11: 317. doi:10.1016/0167-9317(90)90122-A.
  6. ^ Carter, D. J. D. (1997). "Direct measurement of the effect of substrate photoelectrons in x-ray nanolithography". Journal of Vacuum Science and Technology B. 15 (6): 2509. Bibcode:1997JVSTB..15.2509C. doi:10.1116/1.589675.
  7. ^ Lud, Simon Q.; Steenackers, Marin; Jordan, Rainer; Bruno, Paola; Gruen, Dieter M.; Feulner, Peter; Garrido, Jose A.; Stutzmann, Martin (2006). "Chemical Grafting of Biphenyl Self-Assembled Monolayers on Ultrananocrystalline Diamond". Journal of the American Chemical Society. 128 (51): 16884–91. doi:10.1021/ja0657049. PMID   17177439.
  8. ^ Glavatskikh, I. A.; Kortov, V. S.; Fitting, H.-J. (2001). "Self-consistent electrical charging of insulating layers and metal-insulator-semiconductor structures". Journal of Applied Physics. 89: 440. Bibcode:2001JAP....89..440G. doi:10.1063/1.1330242.

Related Research Articles

In integrated circuit manufacturing, photolithography or optical lithography is a general term used for techniques that use light to produce minutely patterned thin films of suitable materials over a substrate, such as a silicon wafer, to protect selected areas of it during subsequent etching, deposition, or implantation operations. Typically, ultraviolet light is used to transfer a geometric design from an optical mask to a light-sensitive chemical (photoresist) coated on the substrate. The photoresist either breaks down or hardens where it is exposed to light. The patterned film is then created by removing the softer parts of the coating with appropriate solvents.

<span class="mw-page-title-main">Photoresist</span> Light-sensitive material used in making electronics


A photoresist is a light-sensitive material used in several processes, such as photolithography and photoengraving, to form a patterned coating on a surface. This process is crucial in the electronic industry.

<span class="mw-page-title-main">Auger electron spectroscopy</span> Analytical technique used specifically in the study of surfaces

Auger electron spectroscopy is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials science. It is a form of electron spectroscopy that relies on the Auger effect, based on the analysis of energetic electrons emitted from an excited atom after a series of internal relaxation events. The Auger effect was discovered independently by both Lise Meitner and Pierre Auger in the 1920s. Though the discovery was made by Meitner and initially reported in the journal Zeitschrift für Physik in 1922, Auger is credited with the discovery in most of the scientific community. Until the early 1950s Auger transitions were considered nuisance effects by spectroscopists, not containing much relevant material information, but studied so as to explain anomalies in X-ray spectroscopy data. Since 1953 however, AES has become a practical and straightforward characterization technique for probing chemical and compositional surface environments and has found applications in metallurgy, gas-phase chemistry, and throughout the microelectronics industry.

<span class="mw-page-title-main">X-ray photoelectron spectroscopy</span> Spectroscopic technique

X-ray photoelectron spectroscopy (XPS) is a surface-sensitive quantitative spectroscopic technique based on the photoelectric effect that can identify the elements that exist within a material or are covering its surface, as well as their chemical state, and the overall electronic structure and density of the electronic states in the material. XPS is a powerful measurement technique because it not only shows what elements are present, but also what other elements they are bonded to. The technique can be used in line profiling of the elemental composition across the surface, or in depth profiling when paired with ion-beam etching. It is often applied to study chemical processes in the materials in their as-received state or after cleavage, scraping, exposure to heat, reactive gasses or solutions, ultraviolet light, or during ion implantation.

<span class="mw-page-title-main">X-ray fluorescence</span> Emission of secondary X-rays from a material excited by high-energy X-rays

X-ray fluorescence (XRF) is the emission of characteristic "secondary" X-rays from a material that has been excited by being bombarded with high-energy X-rays or gamma rays. The phenomenon is widely used for elemental analysis and chemical analysis, particularly in the investigation of metals, glass, ceramics and building materials, and for research in geochemistry, forensic science, archaeology and art objects such as paintings.

<span class="mw-page-title-main">Photomask</span>

A photomask is an opaque plate with holes or transparencies that allow light to shine through in a defined pattern. They are commonly used in photolithography and the production of integrated circuits in particular. Masks are used to produce a pattern on a substrate, normally a thin slice of silicon known as a wafer in the case of chip manufacturing. Several masks are used in turn, each one reproducing a layer of the completed design, and together they are known as a mask set.

<span class="mw-page-title-main">Photoemission spectroscopy</span> Examining a substance by measuring electrons emitted in the photoelectric effect

Photoemission spectroscopy (PES), also known as photoelectron spectroscopy, refers to energy measurement of electrons emitted from solids, gases or liquids by the photoelectric effect, in order to determine the binding energies of electrons in the substance. The term refers to various techniques, depending on whether the ionization energy is provided by X-ray, XUV or UV photons. Regardless of the incident photon beam, however, all photoelectron spectroscopy revolves around the general theme of surface analysis by measuring the ejected electrons.

<span class="mw-page-title-main">Electron-beam lithography</span> Lithographic technique that uses a scanning beam of electrons

Electron-beam lithography is the practice of scanning a focused beam of electrons to draw custom shapes on a surface covered with an electron-sensitive film called a resist (exposing). The electron beam changes the solubility of the resist, enabling selective removal of either the exposed or non-exposed regions of the resist by immersing it in a solvent (developing). The purpose, as with photolithography, is to create very small structures in the resist that can subsequently be transferred to the substrate material, often by etching.

Masklesslithography (MPL) is a photomask-less photolithography-like technology used to project or focal-spot write the image pattern onto a chemical resist-coated substrate by means of UV radiation or electron beam.

Nanolithography (NL) is a growing field of techniques within nanotechnology dealing with the engineering of nanometer-scale structures on various materials.

<span class="mw-page-title-main">Extreme ultraviolet lithography</span> Lithographic technique using an extreme ultraviolet wavelength, usually 13.5 nm

Extreme ultraviolet lithography is an optical lithography technology used in steppers, machines that make integrated circuits (ICs) for computers and other electronic devices. It uses a range of extreme ultraviolet (EUV) wavelengths, roughly spanning a 2% FWHM bandwidth about 13.5 nm, to produce a pattern by exposing reflective photomask to UV light which gets reflected onto a substrate covered by photoresist. It is widely applied in semiconductor device fabrication process.

Next-generation lithography or NGL is a term used in integrated circuit manufacturing to describe the lithography technologies in development which are intended to replace current techniques. The term applies to any lithography method which uses a shorter-wavelength light or beam type than the current state of the art, such as X-ray lithography, electron beam lithography, focused ion beam lithography, and nanoimprint lithography. The term may also be used to describe techniques which achieve finer resolution features from an existing light wavelength.

<span class="mw-page-title-main">Stepper</span>

A stepper is a device used in the manufacture of integrated circuits (ICs) that is similar in operation to a slide projector or a photographic enlarger. Stepper is short for step-and-repeat camera. Steppers are an essential part of the complex process, called photolithography, which creates millions of microscopic circuit elements on the surface of chips of silicon. These chips form the heart of ICs such as computer processors, memory chips, and many other devices.

<span class="mw-page-title-main">Secondary electrons</span>

Secondary electrons are electrons generated as ionization products. They are called 'secondary' because they are generated by other radiation. This radiation can be in the form of ions, electrons, or photons with sufficiently high energy, i.e. exceeding the ionization potential. Photoelectrons can be considered an example of secondary electrons where the primary radiation are photons; in some discussions photoelectrons with higher energy (>50 eV) are still considered "primary" while the electrons freed by the photoelectrons are "secondary".

<span class="mw-page-title-main">Extreme ultraviolet</span> Ultraviolet light with a wavelength of 10–121nm

Extreme ultraviolet radiation or high-energy ultraviolet radiation is electromagnetic radiation in the part of the electromagnetic spectrum spanning wavelengths from 124 nm down to 10 nm, and therefore having photons with energies from 10 eV up to 124 eV. EUV is naturally generated by the solar corona and artificially by plasma, high harmonic generation sources and synchrotron light sources. Since UVC extends to 100 nm, there is some overlap in the terms.

Contact lithography, also known as contact printing, is a form of photolithography whereby the image to be printed is obtained by illumination of a photomask in direct contact with a substrate coated with an imaging photoresist layer.

<span class="mw-page-title-main">LIGA</span> Fabrication technology used to create high-aspect-ratio microstructures

LIGA is a fabrication technology used to create high-aspect-ratio microstructures. The term is a German acronym for Lithographie, Galvanoformung, Abformung – lithography, electroplating, and molding.

Interference lithography is a technique for patterning regular arrays of fine features, without the use of complex optical systems or photomasks.

The proximity effect in electron beam lithography (EBL) is the phenomenon that the exposure dose distribution, and hence the developed pattern, is wider than the scanned pattern due to the interactions of the primary beam electrons with the resist and substrate. These cause the resist outside the scanned pattern to receive a non-zero dose.

References

  1. "Pdf - Semiconductor Technology from A to Z - Halbleiter.org". www.halbleiter.org. Retrieved 2022-06-14.