K-edge

Last updated

In X-ray absorption spectroscopy, the K-edge is a sudden increase in x-ray absorption occurring when the energy of the X-rays is just above the binding energy of the innermost electron shell of the atoms interacting with the photons. The term is based on X-ray notation, where the innermost electron shell is known as the K-shell. Physically, this sudden increase in attenuation is caused by the photoelectric absorption of the photons. For this interaction to occur, the photons must have more energy than the binding energy of the K-shell electrons (K-edge). A photon having an energy just above the binding energy of the electron is therefore more likely to be absorbed than a photon having an energy just below this binding energy or significantly above it. [1]

Contents

The energies near the K-edge are also objects of study, and provide other information.

Use

The two radiocontrast agents iodine and barium have ideal K-shell binding energies for absorption of X-rays: 33.2 keV and 37.4 keV respectively, which is close to the mean energy of most diagnostic X-ray beams. Similar sudden increases in attenuation may also be found for other inner shells than the K shell; the general term for the phenomenon is absorption edge. [2]

Dual-energy computed tomography techniques take advantage of the increased attenuation of iodinated radiocontrast at lower tube energies to heighten the degree of contrast between iodinated radiocontrast and other high attenuation biological material present in the body such as blood and hemorrhage. [3]

Metal K-edge

Metal K-edge spectroscopy is a spectroscopic technique used to study the electronic structures of transition metal atoms and complexes. This method measures X-ray absorption caused by the excitation of a 1s electron to valence bound states localized on the metal, which creates a characteristic absorption peak called the K-edge. The K-edge can be divided into the pre-edge region (comprising the pre-edge and rising edge transitions) and the near-edge region (comprising the intense edge transition and ~150 eV above it).

Pre-edge

The K-edge of an open shell transition metal ion displays a weak pre-edge 1s-to-valence-metal-d transition at a lower energy than the intense edge jump. This dipole-forbidden transition gains intensity through a quadrupole mechanism and/or through 4p mixing into the final state. The pre-edge contains information about ligand fields and oxidation state. Higher oxidation of the metal leads to greater stabilization of the 1s orbital with respect to the metal d orbitals, resulting in higher energy of the pre-edge. Bonding interactions with ligands also cause changes in the metal's effective nuclear charge (Zeff), leading to changes in the energy of the pre-edge.

The intensity under the pre-edge transition depends on the geometry around the absorbing metal and can be correlated to the structural symmetry in the molecule. [4] Molecules with centrosymmetry have low pre-edge intensity, whereas the intensity increases as the molecule moves away from centrosymmetry. This change is due to the higher mixing of the 4p with the 3d orbitals as the molecule loses centrosymmetry.

Rising-edge

A rising-edge follows the pre-edge, and may consist of several overlapping transitions that are hard to resolve. The energy position of the rising-edge contains information about the oxidation state of the metal.

In the case of copper complexes, the rising-edge consists of intense transitions, which provide information about bonding. For CuI species, this transition is a distinct shoulder and arises from intense electric-dipole-allowed 1s→4p transitions. The normalized intensity and energy of the rising-edge transitions in these CuI complexes can be used to distinguish between two-, three- and four-coordinate CuI sites. [5] In the case of higher-oxidation-state copper atoms, the 1s→4p transition lies higher in energy, mixed in with the near-edge region. However, an intense transition in the rising-edge region is observed for CuIII and some CuII complexes from a formally forbidden two electron 1s→4p+shakedown transition. This “shakedown” process arises from a 1s→4p transition that leads to relaxation of the excited state, followed by a ligand-to-metal charge transfer to the excited state.

This rising-edge transition can be fitted to a valence bond configuration (VBCI) model to obtain the composition of the ground state wavefunction and information on ground state covalency. The VBCI model describes the ground and excited state as a linear combination of the metal-based d-state and the ligand-based charge transfer state. The higher the contribution of the charge transfer state to the ground state, the higher is the ground state covalency indicating stronger metal-ligand bonding.

Near-edge

The near-edge region is difficult to quantitatively analyze because it describes transitions to continuum levels that are still under the influence of the core potential. This region is analogous to the EXAFS region and contains structural information. Extraction of metrical parameters from the edge region can be obtained by using the multiple-scattering code implemented in the MXAN software. [6]

Ligand K-edge

Ligand K-edge spectroscopy is a spectroscopic technique used to study the electronic structures of metal-ligand complexes. [7] This method measures X-ray absorption caused by the excitation of ligand 1s electrons to unfilled p orbitals (principal quantum number ) and continuum states, which creates a characteristic absorption feature called the K-edge.

Pre-edges

Transitions at energies lower than the edge can occur, provided they lead to orbitals with some ligand p character; these features are called pre-edges. Pre-edge intensities (D0) are related to the amount of ligand (L) character in the unfilled orbital:

where is the wavefunction of the unfilled orbital, r is the transition dipole operator, and is the "covalency" or ligand character in the orbital. Since , the above expression relating intensity and quantum transition operators can be simplified to use experimental values:

where n is the number of absorbing ligand atoms, h is the number of holes, and Is is the transition dipole integral which can be determined experimentally. Therefore, by measuring the intensity of pre-edges, it is possible to experimentally determine the amount of ligand character in a molecular orbital.

See also

Related Research Articles

<span class="mw-page-title-main">Covalent bond</span> Chemical bond by sharing of electron pairs

A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding. For many molecules, the sharing of electrons allows each atom to attain the equivalent of a full valence shell, corresponding to a stable electronic configuration. In organic chemistry, covalent bonding is much more common than ionic bonding.

<span class="mw-page-title-main">Stimulated emission</span> Release of a photon triggered by another

Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron, causing it to drop to a lower energy level. The liberated energy transfers to the electromagnetic field, creating a new photon with a frequency, polarization, and direction of travel that are all identical to the photons of the incident wave. This is in contrast to spontaneous emission, which occurs at a characteristic rate for each of the atoms/oscillators in the upper energy state regardless of the external electromagnetic field.

<span class="mw-page-title-main">Energy level</span> Different states of quantum systems

A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The term is commonly used for the energy levels of the electrons in atoms, ions, or molecules, which are bound by the electric field of the nucleus, but can also refer to energy levels of nuclei or vibrational or rotational energy levels in molecules. The energy spectrum of a system with such discrete energy levels is said to be quantized.

<span class="mw-page-title-main">X-ray fluorescence</span> Emission of secondary X-rays from a material excited by high-energy X-rays

X-ray fluorescence (XRF) is the emission of characteristic "secondary" X-rays from a material that has been excited by being bombarded with high-energy X-rays or gamma rays. The phenomenon is widely used for elemental analysis and chemical analysis, particularly in the investigation of metals, glass, ceramics and building materials, and for research in geochemistry, forensic science, archaeology and art objects such as paintings.

In physics, mean free path is the average distance over which a moving particle travels before substantially changing its direction or energy, typically as a result of one or more successive collisions with other particles.

<span class="mw-page-title-main">Synchrotron light source</span> Particle accelerator designed to produce intense x-ray beams

A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam that are needed to stimulate the high energy electrons to emit photons.

In physics, atomic spectroscopy is the study of the electromagnetic radiation absorbed and emitted by atoms. Since unique elements have unique emission spectra, atomic spectroscopy is applied for determination of elemental compositions. It can be divided by atomization source or by the type of spectroscopy used. In the latter case, the main division is between optical and mass spectrometry. Mass spectrometry generally gives significantly better analytical performance, but is also significantly more complex. This complexity translates into higher purchase costs, higher operational costs, more operator training, and a greater number of components that can potentially fail. Because optical spectroscopy is often less expensive and has performance adequate for many tasks, it is far more common. Atomic absorption spectrometers are one of the most commonly sold and used analytical devices.

<span class="mw-page-title-main">Internal conversion</span> Process where an excited nucleus ejects an orbital electron from its atom

Internal conversion is an atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in internal conversion, a high-energy electron is emitted from the excited atom, but not from the nucleus. For this reason, the high-speed electrons resulting from internal conversion are not called beta particles, since the latter come from beta decay, where they are newly created in the nuclear decay process.

In condensed matter physics, scintillation is the physical process where a material, called a scintillator, emits ultraviolet or visible light under excitation from high energy photons or energetic particles. See scintillator and scintillation counter for practical applications.

<span class="mw-page-title-main">Extended X-ray absorption fine structure</span> Measurement of X-ray absorption of a material as a function of energy

Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented.

<span class="mw-page-title-main">X-ray absorption spectroscopy</span> Spectroscopic technique

X-ray absorption spectroscopy (XAS) is a widely used technique for determining the local geometric and/or electronic structure of matter. The experiment is usually performed at synchrotron radiation facilities, which provide intense and tunable X-ray beams. Samples can be in the gas phase, solutions, or solids.

X-ray absorption near edge structure (XANES), also known as near edge X-ray absorption fine structure (NEXAFS), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

Surface-extended X-ray absorption fine structure (SEXAFS) is the surface-sensitive equivalent of the EXAFS technique. This technique involves the illumination of the sample by high-intensity X-ray beams from a synchrotron and monitoring their photoabsorption by detecting in the intensity of Auger electrons as a function of the incident photon energy. Surface sensitivity is achieved by the interpretation of data depending on the intensity of the Auger electrons instead of looking at the relative absorption of the X-rays as in the parent method, EXAFS.

<span class="mw-page-title-main">Metal L-edge</span>

Metal L-edge spectroscopy is a spectroscopic technique used to study the electronic structures of transition metal atoms and complexes. This method measures X-ray absorption caused by the excitation of a metal 2p electron to unfilled d orbitals, which creates a characteristic absorption peak called the L-edge. Similar features can also be studied by Electron Energy Loss Spectroscopy. According to the selection rules, the transition is formally electric-dipole allowed, which not only makes it more intense than an electric-dipole forbidden metal K pre-edge transition, but also makes it more feature-rich as the lower required energy results in a higher-resolution experiment.

Photoelectrochemical processes are processes in photoelectrochemistry; they usually involve transforming light into other forms of energy. These processes apply to photochemistry, optically pumped lasers, sensitized solar cells, luminescence, and photochromism.

<span class="mw-page-title-main">Resonant inelastic X-ray scattering</span> Advanced X-ray spectroscopy technique

Resonant inelastic X-ray scattering (RIXS) is an advanced X-ray spectroscopy technique.

<span class="mw-page-title-main">X-ray emission spectroscopy</span>

X-ray emission spectroscopy (XES) is a form of X-ray spectroscopy in which a core electron is excited by an incident x-ray photon and then this excited state decays by emitting an x-ray photon to fill the core hole. The energy of the emitted photon is the energy difference between the involved electronic levels. The analysis of the energy dependence of the emitted photons is the aim of the X-ray emission spectroscopy.

Electron orbital imaging is an X-ray synchrotron technique used to produce images of electron orbitals in real space. It utilizes the technique of X-ray Raman scattering (XRS), also known as Non-resonant Inelastic X-Ray Scattering (NIXS) to inelastically scatter electrons off a single crystal. It is an element specific spectroscopic technique for studying the valence electrons of transition metals.

<span class="mw-page-title-main">Inverted ligand field theory</span> Molecular orbital theory

Inverted ligand field theory (ILFT) describes a phenomenon in the bonding of coordination complexes where the lowest unoccupied molecular orbital is primarily of ligand character. This is contrary to the traditional ligand field theory or crystal field theory picture and arises from the breaking down of the assumption that in organometallic complexes, ligands are more electronegative and have frontier orbitals below those of the d orbitals of electropositive metals. Towards the right of the d-block, when approaching the transition-metal–main group boundary, the d orbitals become more core-like, making their cations more electronegative. This decreases their energies and eventually arrives at a point where they are lower in energy than the ligand frontier orbitals. Here the ligand field inverts so that the bonding orbitals are more metal-based, and antibonding orbitals more ligand-based. The relative arrangement of the d orbitals are also inverted in complexes displaying this inverted ligand field.

References

  1. Curry, Thomas S.; Dowdey, James E.; Murry, Robert C. (1990). "Attenuation". Christensen's Physics of Diagnostic Radiology. Lippincott Williams & Wilkins. p. 78. ISBN   978-0-8121-1310-5.
  2. NIST data for full tabulation.
  3. "Neuroradiology: Dual Energy Imaging Pearls - Educational Tools | CT Scanning | CT Imaging | CT Scan Protocols".
  4. Westre, Tami E.; Kennepohl, Pierre; DeWitt, Jane G.; Hedman, Britt; Hodgson, Keith O.; Solomon, Edward I. (1997). "A Multiplet Analysis of Fe K-Edge 1s → 3d Pre-Edge Features of Iron Complexes". Journal of the American Chemical Society. 119 (27). American Chemical Society (ACS): 6297–6314. doi:10.1021/ja964352a. ISSN   0002-7863.
  5. Kau, Lung Shan; Spira-Solomon, Darlene J.; Penner-Hahn, James E.; Hodgson, Keith O.; Solomon, Edward I. (1987). "X-ray absorption edge determination of the oxidation state and coordination number of copper. Application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen". Journal of the American Chemical Society. 109 (21). American Chemical Society (ACS): 6433–6442. doi:10.1021/ja00255a032. ISSN   0002-7863.
  6. Benfatto, M.; Della Longa, S. (20 June 2001). "Geometrical fitting of experimental XANES spectra by a full multiple-scattering procedure". Journal of Synchrotron Radiation. 8 (4). International Union of Crystallography (IUCr): 1087–1094. doi: 10.1107/s0909049501006422 . ISSN   0909-0495. PMID   11486360.
  7. Solomon, E.; Hedman, B.; Hodgson, K.; Dey, A.; Szilagyi, R. (2005). "Ligand K-edge X-ray absorption spectroscopy: covalency of ligand–metal bonds". Coordination Chemistry Reviews. 249 (1–2): 97–129. doi:10.1016/j.ccr.2004.03.020.