Photon energy

Last updated

Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.

Contents

Photon energy can be expressed using any energy unit. Among the units commonly used to denote photon energy are the electronvolt (eV) and the joule (as well as its multiples, such as the microjoule). As one joule equals 6.24×1018 eV, the larger units may be more useful in denoting the energy of photons with higher frequency and higher energy, such as gamma rays, as opposed to lower energy photons as in the optical and radio frequency regions of the electromagnetic spectrum.

Formulas

Physics

Photon energy is directly proportional to frequency. [1] where

This equation is known as the Planck relation.

Additionally, using equation f = c/λ, where

The photon energy at 1 Hz is equal to 6.62607015×10−34 J, which is equal to 4.135667697×10−15 eV.

Electronvolt

Photon energy is often measured in electronvolts. One electronvolt (eV) is exactly 1.602176634×10−19 J [3] or, using the atto prefix, 0.1602176634 aJ, in the SI system. To find the photon energy in electronvolt using the wavelength in micrometres, the equation is approximately

since = 1.239841984...×10−6 eV⋅m [4] where h is the Planck constant, c is the speed of light, and e is the elementary charge.

The photon energy of near infrared radiation at 1 μm wavelength is approximately 1.2398 eV.

Examples

An FM radio station transmitting at 100  MHz emits photons with an energy of about 4.1357×10−7 eV. This minuscule amount of energy is approximately 8×10−13 times the electron's mass (via mass–energy equivalence).

Very-high-energy gamma rays have photon energies of 100 GeV to over 1 PeV (1011 to 1015 electronvolts) or 16 nJ to 160 μJ. [5] This corresponds to frequencies of 2.42×1025 Hz to 2.42×1029 Hz.

During photosynthesis, specific chlorophyll molecules absorb red-light photons at a wavelength of 700 nm in the photosystem I, corresponding to an energy of each photon of ≈ 2 eV ≈ 3×10−19 J ≈ 75 kBT, where kBT denotes the thermal energy. A minimum of 48 photons is needed for the synthesis of a single glucose molecule from CO2 and water (chemical potential difference 5×10−18 J) with a maximal energy conversion efficiency of 35%.

See also

Related Research Articles

<span class="mw-page-title-main">Electromagnetic radiation</span> Physical model of propagating energy

In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy.

In physics, an electronvolt, also written electron-volt and electron volt, is the measure of an amount of kinetic energy gained by a single electron accelerating through an electric potential difference of one volt in vacuum. When used as a unit of energy, the numerical value of 1 eV in joules is equal to the numerical value of the charge of an electron in coulombs. Under the 2019 revision of the SI, this sets 1 eV equal to the exact value 1.602176634×10−19 J.

<span class="mw-page-title-main">Electromagnetic spectrum</span> Range of frequencies or wavelengths of electromagnetic radiation

The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high frequency these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications.

A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that always move at the speed of light measured in vacuum. The photon belongs to the class of boson particles.

<span class="mw-page-title-main">Stimulated emission</span> Release of a photon triggered by another

Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron, causing it to drop to a lower energy level. The liberated energy transfers to the electromagnetic field, creating a new photon with a frequency, polarization, and direction of travel that are all identical to the photons of the incident wave. This is in contrast to spontaneous emission, which occurs at a characteristic rate for each of the atoms/oscillators in the upper energy state regardless of the external electromagnetic field.

<span class="mw-page-title-main">Wien's displacement law</span> Relation between peak wavelengths of black body radiation and temperature

In physics, Wien's displacement law states that the black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature. The shift of that peak is a direct consequence of the Planck radiation law, which describes the spectral brightness or intensity of black-body radiation as a function of wavelength at any given temperature. However, it had been discovered by German physicist Wilhelm Wien several years before Max Planck developed that more general equation, and describes the entire shift of the spectrum of black-body radiation toward shorter wavelengths as temperature increases.

<span class="mw-page-title-main">Compton scattering</span> Scattering of photons off charged particles

Compton scattering is the quantum theory of high frequency photons scattering following an interaction with a charged particle, usually an electron. Specifically, when the photon hits electrons, it releases loosely bound electrons from the outer valence shells of atoms or molecules.

<span class="mw-page-title-main">Wavenumber</span> Spatial frequency of a wave

In the physical sciences, the wavenumber, also known as repetency, is the spatial frequency of a wave, measured in cycles per unit distance or radians per unit distance. It is analogous to temporal frequency, which is defined as the number of wave cycles per unit time or radians per unit time.

<span class="mw-page-title-main">Thermal radiation</span> Electromagnetic radiation generated by the thermal motion of particles

Thermal radiation is electromagnetic radiation emitted by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. The emission of energy arises from a combination of electronic, molecular, and lattice oscillations in a material. Kinetic energy is converted to electromagnetism due to charge-acceleration or dipole oscillation. At room temperature, most of the emission is in the infrared (IR) spectrum, though above around 525 °C (977 °F) enough of it becomes visible for the matter to visibly glow. This visible glow is called incandescence. Thermal radiation is one of the fundamental mechanisms of heat transfer, along with conduction and convection.

<span class="mw-page-title-main">Planck's law</span> Spectral density of light emitted by a black body

In physics, Planck's law describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature T, when there is no net flow of matter or energy between the body and its environment.

In spectroscopy, the Rydberg constant, symbol for heavy atoms or for hydrogen, named after the Swedish physicist Johannes Rydberg, is a physical constant relating to the electromagnetic spectra of an atom. The constant first arose as an empirical fitting parameter in the Rydberg formula for the hydrogen spectral series, but Niels Bohr later showed that its value could be calculated from more fundamental constants according to his model of the atom.

<span class="mw-page-title-main">Ultraviolet catastrophe</span> Classical physics prediction that black body radiation grows unbounded with frequency

The ultraviolet catastrophe, also called the Rayleigh–Jeans catastrophe, was the prediction of late 19th century and early 20th century classical physics that an ideal black body at thermal equilibrium would emit an unbounded quantity of energy as wavelength decreased into the ultraviolet range. The term "ultraviolet catastrophe" was first used in 1911 by Paul Ehrenfest, but the concept originated with the 1900 statistical derivation of the Rayleigh–Jeans law.

<span class="mw-page-title-main">Rydberg formula</span> Formula for spectral line wavelengths in alkali metals

In atomic physics, the Rydberg formula calculates the wavelengths of a spectral line in many chemical elements. The formula was primarily presented as a generalization of the Balmer series for all atomic electron transitions of hydrogen. It was first empirically stated in 1888 by the Swedish physicist Johannes Rydberg, then theoretically by Niels Bohr in 1913, who used a primitive form of quantum mechanics. The formula directly generalizes the equations used to calculate the wavelengths of the hydrogen spectral series.

<span class="mw-page-title-main">Black-body radiation</span> Thermal electromagnetic radiation

Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body. It has a specific, continuous spectrum of wavelengths, inversely related to intensity, that depend only on the body's temperature, which is assumed, for the sake of calculations and theory, to be uniform and constant.

The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle. It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons.

<span class="mw-page-title-main">Wien approximation</span> Physical law

Wien's approximation is a law of physics used to describe the spectrum of thermal radiation. This law was first derived by Wilhelm Wien in 1896. The equation does accurately describe the short-wavelength (high-frequency) spectrum of thermal emission from objects, but it fails to accurately fit the experimental data for long-wavelength (low-frequency) emission.

The Planck constant, or Planck's constant, denoted by , is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum. The closely related reduced Planck constant, equal to and denoted is commonly used in quantum physics equations.

In radiometry, radiant exposure or fluence is the radiant energy received by a surface per unit area, or equivalently the irradiance of a surface, integrated over time of irradiation, and spectral exposure is the radiant exposure per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiant exposure is the joule per square metre, while that of spectral exposure in frequency is the joule per square metre per hertz and that of spectral exposure in wavelength is the joule per square metre per metre —commonly the joule per square metre per nanometre.

In radiometry, radiant energy density is the radiant energy per unit volume. The SI unit of radiant energy density is the joule per cubic metre (J/m3).

The Planck relation is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: The constant of proportionality, h, is known as the Planck constant. Several equivalent forms of the relation exist, including in terms of angular frequency ω: where . Written using the symbol f for frequency, the relation is

References

  1. "Energy of Photon". Photovoltaic Education Network, pveducation.org.
  2. 1 2 "6.3 How is energy related to the wavelength of radiation? | METEO 300: Fundamentals of Atmospheric Science".
  3. "2022 CODATA Value: electron volt". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  4. "NIST table of fundamental physical constants" . Retrieved 27 June 2023.
  5. Sciences, Chinese Academy of. "Observatory discovers a dozen PeVatrons and photons exceeding 1 PeV, launches ultra-high-energy gamma astronomy era". phys.org. Retrieved 2021-11-25.